Shallow Parsing Using Probabilistic Grammatical Inference


Authors

Thollard, Franck and Clark, Alexander

Year

2002

Abstract

This paper presents an application of grammatical inference to the task of shallow parsing. We first learn a deterministic probabilistic automaton that models the joint distribution of Chunk (syntactic phrase) tags and Part-of-speech tags, and then use this automaton as a transducer to find the most likely chunk tag sequence using a dynamic programming algorithm. We discuss an efficient means of incorporating lexical information, which automatically identifies particular words that are useful using a mutual information criterion, together with an application of bagging that improve our results. Though the results are not as high as comparable techniques that use models with a fixed structure, the models we learn are very compact and efficient.

citation in bibtex

comments powered by Disqus