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8 Unsupervised Learning and
Grammar Induction

ALEXANDER CLARK
AND SHALOM LAPPIN

In this chapter we consider unsupervised learning from two perspectives. First,
we briefly look at its advantages and disadvantages as an engineering tech-
nique applied to large corpora in natural language processing. While supervised
learning generally achieves greater accuracy with less data, unsupervised learn-
ing offers significant savings in the intensive labor required for annotating text.
Second, we discuss the possible relevance of unsupervised learning to debates
on the cognitive basis of human language acquisition. In this context we explore
the implications of recent work on grammar induction for poverty of stimulus
arguments that purport to motivate a strong bias model of language learning, com-
monly formulated as a theory of universal grammar (UG). We examine the second
issue both as a problem in computational learning theory, and with reference to
empirical work on unsupervised machine learning (ML) of syntactic structure. We
compare two models of learning theory and the place of unsupervised learning
within each of them. Looking at recent work on part-of-speech tagging and the
recognition of syntactic structure, we see how far unsupervised ML methods have
come in acquiring different kinds of grammatical knowledge from raw text.

1 Overview

1.1 Machine learning in natural language processing
and computational linguistics

The machine learning methods presented in this handbook have been applied
to a wide variety of problems in natural language processing. These range from
speech recognition (Chapter 12) through morphological analysis (Chapter 14) and
syntactic parsing (Chapter 4), to the complex text and discourse understanding
applications dealt with in Part IV. ML has produced increasingly successful sys-
tems for handling a large domain of natural language engineering tasks. When
evaluating different types of ML there are a variety of technological issues that
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arise, some of which we will consider in the context of the distinction between
supervised and unsupervised learning procedures.

From an engineering perspective, the main issue to be addressed when compar-
ing the relative merits of supervised vs. unsupervised learning, for a particular
task, is the degree of accuracy that each method achieves in proportion to the
cost of resources that it requires. As we will see, characterizing an optimal bal-
ance between accuracy and cost is not always straightforward. It is necessary to
consider a variety of factors in calculating both of the values that determine this
balance.

It is also interesting to consider if ML has implications for some of the scientific
questions that animate linguistics and cognitive science. Specifically, it is worth
asking if the success of ML methods in solving language engineering problems
illuminates the sorts of learning processes that humans could, in principle, employ
in acquiring knowledge of their language. Clearly the fact that an ML procedure is
able to efficiently acquire important elements of human grammatical knowledge
from corpora does not, in itself, show that human learning operates according to
this procedure. However, to the extent that grammar induction through domain-
general learning methods succeeds on the basis of evidence of the kind available
to children, we achieve insight into the computational credibility of such methods
as models of language acquisition.

1.2 Grammar induction as a machine learning problem
A machine learning system implements a learning algorithm whose output is a
function from a domain of input samples to a range of output values. We divide a
corpus of examples into a training and a test set. The learning algorithm is spec-
ified in conjunction with a model of the phenomenon to be learned. This model
defines the space of possible hypotheses that the algorithm can generate from the
input data. When the values of the model’s parameters are determined through
training of the algorithm on the test set, an element of the hypothesis space is
selected. In the case of grammar induction the algorithm learns from the train-
ing data to construct a parser that assigns descriptions of syntactic structure to
input strings from the test data. It provides a learning procedure for acquiring a
grammar that parses new strings in the corpus.

If we have a gold standard of correct parses in a corpus, then it is possible to
compute the percentage of correct parses that the algorithm produces when tested
on an unseen subpart of this corpus. A more common procedure for scoring an
ML algorithm on a test set is to evaluate its performance for recall and precision.1

The recall of a parsing algorithm A is the percentage of brackets of the test set
that it correctly identifies, where these brackets specify the constituent tree struc-
ture of each sentence in the set. A’s precision is the percentage of the brackets
that it returns which correspond to those in the gold standard. A unified score
for A, known as an F-score, can be computed as an average of its recall and its
precision.
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The choice of parameters and their possible values defines a bias for the lan-
guage model by imposing prior constraints on the set of learnable hypotheses. All
learning requires some sort of bias to restrict the set of possible hypotheses for the
phenomenon to be learned. This bias can express strong assumptions about the
nature of the domain of learning. Alternatively, it can define comparatively weak
domain-specific constraints, with learning driven primarily by domain-general
procedures and conditions.

One way of formalizing a learning bias is as a prior probability distribution on
the elements of the hypothesis space that favors some hypotheses as more likely
than others. The paradigm of Bayesian learning in cognitive science implements
this approach.2 The simplicity and compactness measure that Perfors et al. (2006)
use is an example of a very general prior. We can describe this measure as follows.

Let D be data, and H a hypothesis. Maximum likelihood chooses the H which
makes the D most likely (the maximum probability value of D given H):

(1) arg max H(P(D|H))

Posterior probability is proportional to the prior probability times the likelihood.

(2) P(H|D) ∝ P(H)P(D|H)

The maximum a posteriori approach chooses the H which maximizes the
posterior probability:

(3) arg max H(P(H)P(D|H))

The bias of the model is explicitly represented in the prior P(H). Perfors et al.
(2006) define this prior to give higher values to grammars whose rule sets are
of smaller cardinality, and whose rules are formulated with fewer non-terminal
symbols.

1.3 Supervised learning
When the samples of the training set are annotated with the classifications and
structures that the learning algorithm is intended to produce as output for the test
set, then learning is described as supervised. Grammar induction that is supervised
involves training an ML system on a corpus annotated with the parse structures
that correspond to a gold standard of correct parse descriptions. The learning algo-
rithm infers a function for assigning appropriate parse output to input sentences
on the basis of a training set of sentence argument-parse value pairs.

As an example of supervised grammar induction, consider the learning of
a probabilistic context-free grammar (PCFG).3 Such a grammar conditions the
probability of a child sequence on that of the parent non-terminal. Each of
its context-free grammar (CFG) rules N → X1 . . . Xn expands a non-terminal
N into a sequence X1 . . . Xn of non-terminal and terminal symbols, and the
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rule is assigned a probability value. The grammar provides conditional prob-
abilities of the form P(X1 . . . Xn | N) for each non-terminal N and sequence
X1 . . . Xn of items from the set of non-terminals and the vocabulary of termi-
nals in the grammar. It also specifies a probability distribution over the label
of the root of the tree Ps(N). For a PCFG G, the conditional probabilities
P(X1 . . . Xn | N) correspond to probabilistic parameters that govern the expansion
of a node in a parse-tree according to a corresponding context-free rule N →
X1 . . . Xn in G.

The probabilistic parameter values of a PCFG can be learned from a parse anno-
tated training corpus by computing the frequency of CFG rules instantiated in the
corpus, in accordance with a maximum likelihood estimation (MLE) condition.

(4)
c(A→β1 ... βk)

c(A→γ )

where c(R) = the number of occurrences of a rule R in the annotated corpus.

In practice, MLE does not perform as well as more sophisticated estimation
methods based on distribution-free techniques (see Collins 2004).

It is possible to significantly improve the performance of a PCFG by adding
additional bias to the language model that it defines. Collins (1999) constructs
a lexicalized probabilistic context-free grammar (LPCFG) in which the probabilities
of the CFG rules are conditioned on lexical heads of the phrases that non-
terminal symbols represent. In Collins’ LPCFG non-terminals are replaced by
non-terminal/head pairs. The probability distributions of the model are of the
form Ps(N/h) and P(X1/h1 · · · H/h · · · Xn/hn | N/h) (where H is the category of
the head of the phrase that expands N) . Collins’ LPCFG achieves an F-measure
performance of approximately 88 percent. Charniak and Johnson (2005) present
an LPCFG with an F-score of approximately 91 percent.

Rather than encoding a particular categorical bias into his language model by
excluding certain context-free rules, Collins allows all such rules. He incorporates
bias by adjusting the prior distribution of probabilities over all lexicalized CFG
rules. The model imposes the requirements that (1) sentences have hierarchical
constituent structure, (2) constituents have heads that select for their siblings, and
(3) this selection is determined by the headwords of the siblings.

The bias that Collins, and Charniak and Johnson, specify for their respective
LPCFGs does not express the complex syntactic parameters that have been pro-
posed as elements of a strong bias view of universal grammar (UG). So, for exam-
ple, these models do not contain a parameter for head-complement directionality.
However, they still learn the correct generalizations concerning head-complement
order. The bias of a statistical parsing model has implications for the theory of UG.
It expresses the prior constraints on the hypothesis space required for a particular
learning procedure to achieve effective grammar induction from the input data
that the corpus supplies.
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1.4 Unsupervised learning
In unsupervised learning we do not annotate the training corpus with the struc-
tures or properties that the learning algorithm is intended to produce as its output
values. Rather, the algorithm is provided with the data alone, and must learn some
interesting structure through identifying distributional patterns and clustering
properties of more basic features in the training data. In a machine learning sense,
the most basic task of unsupervised learning is density estimation, which in NLP
generally involves language modeling (see Chapter 3 of this book, STATISTICAL
LANGUAGE MODELLING).

In the case of grammar induction, we are interested in recovering phrases and
hierarchical constituent structure, which could be used for language modeling,
machine translation, or other NLP tasks.

We will also briefly consider semi-supervised learning (see Abney 2008). This
approach recognizes that in reality there will only be limited amounts of annotated
data, and yet such data can be extremely useful when combined with much larger
amounts of unannotated data.

2 Computational Learning Theory

One way of gaining insight into the problem of unsupervised learning is through
theoretical analysis. While supervised learning has been the subject of detailed
theoretical investigation that has yielded the design of efficient classification algo-
rithms (Vapnik 1998), unsupervised learning of language offers a different kind
of challenge. The initial formulations of the problem, most notably by Gold
(1967), suggested that it is fundamentally intractable. Subsequent accounts within
the PAC (probably approximately correct) learning framework (Valiant 1984;
Kearns & Vazirani 1994) appeared to confirm this conclusion. As a result, while
there have been numerous attempts over the years to learn grammars from raw
data, very few have been informed by theoretical learning models. Instead, these
efforts have relied primarily on heuristics. The very earliest attempts at unsuper-
vised grammar induction (Lamb 1961) lacked any theoretical underpinnings, and
most current work in this area continues to pursue a non-theoretical, heuristic
approach.

In our view, the theoretical problems have been misunderstood, and, in some
cases, not properly formulated. Learnability results depend on quite subtle details
of the formalisms. Small changes in the modeling assumptions can produce rad-
ically different results. In this section, we will review some of the competing
theoretical models for unsupervised learning of natural languages, and draw con-
clusions that depart substantially from the received wisdom of the field. Our goal
is to use formal methods to illuminate the nature of learning through realistic
assumptions. If the model trivializes the learning problem so that anything is
learnable, then it is vacuous. Conversely, if it rules out efficient learning where
we know that learning takes place, then it is clearly misguided.
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As we have noted, the field of grammatical inference owes its origins to Gold
(1967). In his paper Gold presents a number of different learning paradigms.
We limit ourselves to the one in which the learner must acquire a language
class only from positive data. As has been pointed out before, this model suf-
fers from a number of serious shortcomings.4 On one hand, it fails to place
restrictions on the learner that are necessary to achieve rapid learning within the
available resources of time and computation. On the other hand, it imposes exces-
sively stringent limitations on learning by requiring that languages be acquired
under far more difficult circumstances than those which children have to deal
with.

We will discuss one of these problems briefly to give a sense of what is
involved. In the Gold paradigm the learner is provided with an infinite sequence
of examples. His/her model requires the learner to produce correct grammatical-
ity judgments after making only a finite number of errors. The learner must do this
for every possible presentation of the language. A presentation is characterized
so that every string in the language (every grammatical sentence) appears at least
once in the data, and no ungrammatical sentences are included. These are the min-
imum requirements for a presentation to fully exhibit a particular language (rather
than others). But on reflection this paradigm makes absurd demands on human
learning. The learner is obliged to acquire a language on every presentation, even
when the sequence of data samples are chosen by an infinitely powerful adver-
sary, with knowledge of the internal structure of the learner, who is designing the
presentation in order to make learning maximally difficult. This situation does not
correspond to the one in which children normally acquire their language. They are
generally exposed to helpfully organized sequences of sentences from supportive
adults interested in facilitating learning. It is instructive to work through the proof
of Gold’s most celebrated result, that no supra-finite language class is identifiable
in the limit, to see the crucial role that unconstrained presentations of data play in
this proof.5

Conversely, because sample presentations are not restricted, Gold cannot con-
strain either the speed or the complexity of the learning process (although subse-
quent researchers have tried to add constraints to control these properties, such as
Pitt (1989) and de la Higuera (1997)).

In the Gold model, there are two important positive results. The first is that
the class of all finite languages is learnable. The second is that any finite class of
languages is learnable. The first class is infinite, but its members are all finite. The
second is finite, but one or more of its elements can be infinite. Both of these results
use fairly trivial learning algorithms.

To learn the class of all finite languages the learner uses rote learning. He/she
does not need to generalize at all, but can simply memorize the examples that
have been seen. At each point, the learner returns the maximally conservative
hypothesis that the language he/she is learning consists of only those sentences
that he/she has already seen. It is easy to see that this very simple process of
enumeration allows for only a finite number of errors, where the number of errors
is bounded by the size of the language.
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To learn a finite class of languages from a presentation, the learner proceeds as
follows. The learner has access to a hypothesis space of all the languages in the
class, where these languages are arranged in a superset hierarchy. The smallest
language appears at the lowest point of the hierarchy and the largest at the top. As
we noted, every data presentation consists of the strings of a language containing
at least one appearance of each string. When a learner encounters a sentence in a
presentation, he/she deletes from the hypothesis hierarchy any language that does
not contain that sentence. He/she returns the first language (hence the smallest)
that is compatible with the strings of the presentation. It is easy to see that, as the
presentation approaches the limit, the learner will return the correct language for
the data.

Gold proves a negative result to the effect that no supra-finite language class
can be learned in the limit from positive data samples presented arbitrarily from
a corpus. However, he also demonstrates that with negative as well as positive
evidence the class of primitive recursive languages can be learned in the limit.
This class includes the set of context-sensitive languages as a proper subset. In
this Gold learning paradigm negative evidence is provided by an informant who
acts as a decision procedure, telling the learner for each data sample presented
whether it is in the language to be learned, or in its complement set.

The view of learnability for language classes that is associated with Gold’s theo-
rems has provided one of the motivations for the principles and parameters (P&P)
view of UG.6 If the relevant formal results concerning grammar induction are
those just cited and we assume that children do not have access to negative evi-
dence, then, given that they do generalize, one might conclude that they can only
effectively acquire their grammar if there is a finite number of possible human
languages. This would seem to follow from Gold’s learnability results, and the
assumptions that (1) natural languages are infinite, and (2) children do not have
access to negative evidence. The assertion that the class of natural languages is
finite follows from the P&P claim that UG contains a finite set of parameters, with
a finite set of values, ideally binary (Chomsky 1981). While both advocates and
critics of linguistic nativism have, for the most part, agreed in the past that neg-
ative data does not play a significant role in language acquisition, this issue has
become increasingly controversial in recent years.7

In fact the assumption that effective learning requires a finite hypothesis space
of possible grammars is incorrect. There are many positive results even within
the Gold paradigm which establish that infinite classes of infinite languages are
learnable with some non-trivial algorithms (Angluin & Laird 1988; Clark & Eyraud
2007).

It is important to keep in mind that, because the Gold paradigm does not accu-
rately reflect the situation of the child learner, any conclusions we draw from it
are not likely to be reliable. Rather than trying to repair it by adding various
constraints on presentations and polynomial bounds on the amount of possible
computation, generating samples by a fixed distribution, etc., we take a differ-
ent approach. We will construct a model based on the actual facts of language
learning, rather than first starting with a model and then trying to force it onto
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the facts. We shall end up with a model that resembles that of Valiant (1984), but
which departs from it in several key respects.

We start with some standard assumptions. The objects being learned are lan-
guages, which will normally be infinite objects, and these will be represented by
finite systems. These systems can be thought of as grammars, though they might
be encoded in another kind of formalism. The learner is provided with some
information about the language. In the most basic case this will be examples of
sentences in the language, though other sources of information may be consid-
ered. We assume that the learner is provided with the information one piece at
a time, in a sequence of steps, and that at each step the learner either selects a
hypothesis in the form of a representation of the language, or he/she abstains in
the early phases of the algorithm. We say that the learner has successfully learned
the language if, as the amount of data increases, the hypothesis converges (in a
sense to be made precise) to the correct language.

This very rough outline provides a framework within which we can construct
particular models of learning, through specifying precisely details like the classes
of representations and languages, the sorts of information that the learner is
provided with, the definition of convergence, and additional constraints one
might want to place on the learner. Obviously, in order to achieve computational
tractability we will need to make certain simplifying assumptions. In some cases,
these assumptions will make learning more difficult, while in others they may
make it easier. It is important to monitor these assumptions closely when interpret-
ing the formal properties of each model. We need to emphasize that learning does,
of course, occur in the real world. Therefore, if our model predicts that learning is
impossible, it is clearly wrong.

We now proceed to develop this framework by making appropriate choices for
the components that we have indicated. The first and most critical one to consider
is the class of languages (or representations of them). This class corresponds to
the set of possible grammars from which the child must select the grammar of
his/her language. We know that it must include all of the attested natural lan-
guages, and presumably all languages that differ from them only through lexical
changes, and other minor differences. The key questions are the following. How
much larger can this class be while remaining effectively learnable? What are the
defining properties of this class that determine its learnability?

We assume for the moment that the learner is provided only with positive exam-
ples. There are three possibilities to consider. First, the samples are provided by an
adversary, as in Gold’s model. Second, the samples are presented randomly. Under
standard assumptions we can say that they are generated independently and iden-
tically from some fixed distribution. Third, the samples are produced helpfully, by
a teacher trying to assist the learner (Goldman & Mathias 1996). While this last
possibility may seem the most plausible, it is difficult to formalize in a way that
does not trivialize the learning problem. Therefore, we will choose the random
option as a reasonable model.

We observe that the child learns rapidly, in the sense that languages are complex
objects, yet the amount of data which the child requires is only in the range of
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tens of millions of words. Hence we require the learner to learn in a time that
is polynomially bounded in the size of the representation being learned, and we
constrain the learner to be efficient, in that the computation it requires is bounded
also by a polynomial function for the amount of data it sees.8

As for convergence, in the real world we generally do not see exact identifica-
tion of a correct hypothesis: indeed we cannot directly observe the hypotheses.
Instead we find that disagreements on grammaticality judgments are infrequent
among members of a speech community. Generational differences do, of course,
emerge as languages change. As a convergence criterion we can require that the
probability of disagreement between the learner and the adult grammar tend to
zero as it sees more data, and this must happen rapidly.

These conditions naturally yield a version of the PAC learning paradigm. In this
framework a hypothesis (such as a grammar) is learned to within a range of error,
represented by a constant ε, and a range of probability, expressed by a constant
δ, in relation to the size of a data sample. An algorithm A PAC-learns a class of
representations for languages R, if and only if,

(1) there is a polynomial q, such that
(a) for every R ∈ R, which defines a language L
(b) every probability distribution D on the samples of the data, and
(c) every ε, δ > 0,

(2) whenever A sees a number of examples greater than q(1/ε, 1/δ, |R|),
(a) it returns a hypothesis H such that,
(b) with probability greater than 1 − δ,
(c) the error of the hypothesis PD((H − L) ∪ (L − H)) < ε, and

(3) A runs in polynomial time in the total size of the examples seen.

These conditions require that learning be rapid for any language, that com-
plex languages take more time than simple ones, but that the growth in time for
learning in proportion to complexity of the language be slow.

Note that for a realistic model it is important to incorporate this dependency of
learning time on language complexity, as removing it leads to the absurd conclu-
sion that a rote learner cannot acquire finite languages. Thus for the class of finite
grammars, where the representation is just a list of the grammatical sentences, it is
unrealistic to expect the learner to be able to learn any list, no matter how long, in a
fixed amount of time. A rote learner can learn lists of a restricted size within a rea-
sonable time, but will require more time to learn longer lists. Thus it is reasonable,
and standard in the machine learning literature, to allow the number of samples,
as expressed by the polynomial q, to depend on the size of the representation |R|.

A standard PAC-model is distribution free, which entails that learning is equally
rapid for all possible probability distributions on the data. From a mathematical
perspective, this assumption is very convenient, and it forms the basis for the VC
(Vapnik–Chervonenkis) theory of learnability (Vapnik 1998). However, it is unre-
alistic. The samples to which a child is exposed are generated by people in his/her
environment who speak the language he/she is acquiring. The distributions of
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samples in the primary linguistic data (PLD) are not selected to make learning dif-
ficult, but rather to help it proceed.9 Clearly, the distribution of the samples must
depend on the language being learned: French children hear different sentences
from English ones.

Many researchers (Li & Vitányi 1991) have noted that the distribution free
assumption of the classical PAC framework is harsh, but yields powerful tech-
niques. This approach may be mathematically desirable, and it might provide
improvements over other estimation methods (Collins 2004). However, if we
require learnability for any distribution, we find that learning becomes intractably
hard. By contrast, if we restrict the class of distributions in some way, for example
to simple distributions (Li & Vitányi 1991; Denis 2001) or to distributions gen-
erated by the stochastic variations of the representations, such as probabilistic
deterministic finite state automata (PDFA) or PCFGs, then we find that efficient
learning is possible (Clark & Thollard 2004; Clark 2006).

Additional problems for learnability derive from the computational complex-
ity of the learning problem. Learning statistical models of the kinds standardly
employed in current NLP work is hard. So, for example Abe and Warmuth (1992)
show that training a hidden Markov model (HMM) is computationally hard under
common assumptions.10 On standard cryptographic methods, computationally
hard problems can be embedded in the learning of even simple acyclic determin-
istic automata (Kearns & Valiant 1989; Kearns et al., 1994). The natural conclusion
is that the child would not be able to learn such classes. Indeed the sorts of lan-
guages that these problems give rise to bear no relation to natural languages, as
they involve computing parity functions, or multiplying large integers together.
From a formal point of view this means that uniform learning over the entire class
of languages is not possible.

However, Ron et al. (1998) suggest a useful strategy for dealing with these dif-
ficulties. A class of languages can be stratified by a parameter that separates it
into subclasses according to how hard each one is to learn. The specific parameter
for Ron is a distinguishability condition. Similar approaches can be applied to the
learnability of context-free grammars (Clark 2006).

2.1 Summary
What insight can we gain from these formal results and considerations? Unsuper-
vised learning of languages is difficult but possible. This is a favorable outcome,
as it implies that the study of learnability can offer us useful guidance in dealing
with both engineering and cognitive issues in grammar induction.

Under the best possible theoretical analysis, we can see that negative results
rule out uniform learning from positive data of the full classes of regular lan-
guages and context-free languages, but that regular languages, represented by
deterministic finite state automata, and some subclasses of context-free languages,
may be learnable when the distributions of examples are benignly specified.
Both of these representations are based on observable properties of languages.
The non-terminals or states are identified with distributional properties of the
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substrings of the languages. In the case of the regular languages, these are the
residual languages (Clark & Thollard 2004), and with context-free languages these
are the congruence classes (Clark 2006). Conversely it seems that representations
based on deep hidden structures, such as trees, especially trees with many empty
nodes, where the structure is not directly detectable from the surface utterance,
may be hard to learn.

We might also be able to obtain positive results for a class of languages that
is very restricted or even finite, although the languages in this class may them-
selves be infinite. But even here we may encounter problems. Finiteness in itself
does not ensure efficient computation. For example, the negative results in Kearns
et al. (1994) are based on finite sets of finite languages. Despite the fact that they are
finite, they are unlearnable, because the problem of identifying the correct hypoth-
esis is too hard. Even though these families of languages are specified by a small
number of binary valued parameters, the parameters are very tightly entwined
in the computation of a parity function. This causes the class to be not efficiently
learnable.

From a theoretical point of view, the interesting question is whether these results
rule out domain-general learning approaches, and necessitate a very restricted
class of languages. The answer seems to be that they do not. They clearly point to
different language classes from those in the Chomsky hierarchy. The classes that
we use in our learning analyses do not necessarily correspond to normal families
of languages, and certainly not to the Chomsky classes, such as context-free gram-
mars. They might include, for example, some regular languages, some context-free
languages, and some context-sensitive languages, but they may not cover all the
members of these classes. It is also important not to confuse the hypothesis class
of the learner with the class of languages that may be learnable. As Poggio et al.
(2004: 422) say:

Thus, for example, it may be possible that the language learning algorithm may
be easy to describe mathematically while the class of possible natural language
grammars may be difficult to describe.

The hypothesis class could be very much larger than the class of languages for
which it is guaranteed to learn. So, for example, the learner in Clark (2006) repre-
sents its hypotheses as context-free languages. All of these hypotheses lie within
the (smaller) class of non-terminally separated (NTS) languages. The proof given
there establishes that it will learn a PAC-learnable class of unambiguous languages
under some plausible assumptions about the data sample distributions. But if
the samples are generated adversarially (as in one of Gold’s paradigms), then
the learner is only guaranteed to acquire the still smaller class of substitutable
languages (Clark & Eyraud 2007). The algorithm, however, remains unchanged.

These are rather different conclusions from other recent analyses. For example,
Nowak et al. (2002) and Niyogi (2006) claim that the PAC-analysis rules out learn-
ing without specific restrictions. This is largely because their approach does not
allow the size of the language representation to depend on the amount of data
that the learner can have, as discussed above in Section 1.1.
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Our theoretical understanding of learning is changing rapidly. Modifying
Chomsky’s terminology somewhat, we can say that linguistic representations
may achieve varying levels of adequacy. Observational adequacy is the require-
ment that the representations are sufficiently powerful to express the distinc-
tion between grammatical and ungrammatical sentences. Explanatory adequacy
imposes the additional requirement that the representations can be learned from
the available data.

We have not yet achieved explanatory adequacy. The most descriptively ade-
quate frameworks use very powerful systems of representation, such as tree
adjoining grammar (TAG) (Joshi 1987) or head driven phrase structure grammar
(HPSG) (Pollard & Sag 1994), while the grammars developed to date that can be
efficiently learned are not powerful enough to cover the full complexity of natural
language syntax. Whether there are observationally adequate grammars that can
be learned using unsupervised learning from raw corpora remains very much an
open question. Our theoretical analysis points in general towards shallower lin-
guistic representations, regardless of whether these are conceived of in terms of
parameters of a language model, formal grammars, or a more situated account
of learning, which leverages extralinguistic context to a far greater extent than
considered here.

3 Empirical Learning

We now turn to empirical work on unsupervised learning, where ML algorithms
are applied to naturally occurring natural language corpora. We will look in detail
at two NLP tasks. One is the unsupervised learning of word classes, and the other
is unsupervised induction of syntactic parsing.

First, we will briefly take up the problem of evaluation, which is particularly
problematic in the case of unsupervised learning.11 Three methodologies have
been used. The first is naïve. It involves having observers evaluate an algo-
rithm’s output on the basis of their intuitions concerning the property or structure
that the procedure is designed to identify. This approach may offer some insight
into the strengths and weaknesses of the method, but it is both subjective and
imprecise.

A second evaluation technique measures the correspondence between the
results that the algorithm generates and those of a gold standard for the corpus.
So, for example, when evaluating induced word classes one can compare the word
classes that an ML procedure generates for a corpus with the traditional lexical
categories that are assigned to the corpus by a reliable part-of-speech (POS) tagger
that uses these categories. This comparison can be done using standard informa-
tion theoretic criteria. For example the conditional entropy of the gold standard
tags with respect to the induced tags will tell you how much of the information
in the gold standard tags remains unaccounted for by the induced tags. If this
number is very low or zero, then the gold standard tags are predictable from the
induced tags.
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Table 8.1 Comparison of different tag sets on IPSM data. Conditional entropy
of row given column. Blanks (–) are where the two sets have different tokeniza-
tion due to differing treatment of the possessive clitic

Tag set n H Brown ICE LLC LOB Parts POW Sec UPenn

Brown 3.16 0.00 – 0.34 0.22 1.10 0.99 0.32 –
ICE 3.38 – 0.00 – – – – – 0.84
LLC 3.34 0.52 – 0.00 0.44 1.30 1.00 0.45 –
LOB 3.24 0.31 – 0.35 0.00 1.20 1.00 0.24 –
Parts 2.46 0.41 – 0.40 0.41 0.00 0.75 0.38 –
POW 2.72 0.55 – 0.42 0.46 1.00 0.00 0.43 –
Sec 3.24 0.40 – 0.35 0.24 1.20 0.95 0.00 –
Upenn 2.92 – 0.38 – – – – – 0.00

This comparison yields objective numerical evaluation, but the gold standard
in linguistic annotation often incorporates theoretical assumptions that may not
be well motivated. Alternative annotations of the text may be possible. The gold
standard might simply reflect the prestige of the organization that produced the
annotation, the theoretical framework it employs, the amount of data annotated, the
availability of the corpus, or other factors irrelevant to a sound evaluation standard.

In part-of-speech annotations of English, for example, there are significant
differences between various tag sets. Using data provided by the AMALGAM
(Automatic Mapping Among Lexico-Grammatical Annotation Models) project
(Atwell et al., 1995), which provided text annotated with eight different tag sets,
we measured the conditional entropy of each tag set with respect to the others.
Table 8.1 shows the results. We see that the conditional entropy here varies up to
1.3 for these equally valid, manually constructed tag sets,12 and it is zero, as one
would expect, down the leading diagonal. By comparing these competing gold
standards against each other, we observe the range of possible outcomes that we
might expect.

In unsupervised parsing this approach involves using a treebank and measuring
derived trees against gold standard trees: an evaluation approach first employed
by van Zaanen (2000).

The third and final evaluation technique is to invoke some objective and
theoretically neutral evaluation strategy. For example, one can compute the pre-
dictive power of a derived language model for word class induction (Ney et al.,
1994). This is usually defined in terms of perplexity, which measures the ability
of the model to predict the next word in a string or corpus.13 This evalua-
tion metric has two advantages. First, it directly measures a useful property of
the model. Such models can be used in speech recognition, and models with
lower (better) perplexity will perform with a lower error rate. Second, the met-
ric does not depend on linguistic annotations, which as we have noted, are not
uncontroversial. It relies solely on raw, naturally occurring data.
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Alternatively, we could consider performance in an end-to-end problem in
which the results of one procedure are taken as input for a second application.
The output of the latter provide an indirect measure for the success of the former.
Bod (2007a) does this when he uses the trees of his unsupervised parser to sup-
port a machine translation system. However, it is not clear how well this approach
captures the linguistic accuracy of the first algorithm.

3.1 Learning word classes
One of the earliest NLP problems to which unsupervised learning was success-
fully applied is the induction of parts of speech. The words in every language can
be divided into lexical categories that partially correspond to traditional parts of
speech. Nearly all lexical resources use some fixed categories of this type, as do
syntactically annotated corpora. While for many purposes manual tagging of text
is adequate, it is frequently desirable, for reasons of efficiency, to extract lexical
classes from corpora automatically. Moreover, from a cognitive perspective it is
important to determine the extent to which purely distributional algorithms can
learn these categories, as they provide the basis for post-lexical syntactic analysis.

Corresponding to engineering and to cognitive concerns we find two strands
of research. The cognitive science approach is most notably represented by Nick
Chater and his co-workers (Finch et al., 1995; Redington et al., 1998). The engineer-
ing direction focuses on statistical language modeling, where lexical categories
are invoked to smooth n-gram models by specifying conditional probabilities for
strings in terms of word classes rather than individual lexical items. The basic
methods of this approach are studied in detail by Ney et al. (1994), Martin et al.
(1998), and Brown et al. (1992).

We assume a vocabulary of words V = {W1, . . . }. Our task is to learn a deter-
ministic clustering, which we can represent as a class membership function g from
V into the set of class labels {1, . . . , n}. The clustering can be used to define a num-
ber of simple statistical models. The objective function we try to maximise will
be the likelihood of some model, understood as the probability of the data with
respect to that model. The simplest candidate is the class-bigram model, though
this approach can be extended to class-trigram models. Suppose we have a corpus
w1, . . . , wN of length N. We can assume an additional sentence boundary token.
Then the class-bigram model defines the probability of the next word given the
history as

(5) P
(

wi

∣∣∣wi−1
1

)
= P(wi|g(wi))P(g(wi−1)|g(wi−2))

It is not computationally feasible to search through all of the exponentially many
possible partitions of the vocabulary to find the one with the highest likelihood
value. Therefore we need a search algorithm that will give us a local optimum.
The standard techniques (Ney et al., 1994; Martin et al., 1998) use an exchange
algorithm similar to the k-means algorithm for clustering. This procedure (1) itera-
tively improves the likelihood of a given clustering by moving each word from its
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current cluster to the cluster that will give the maximum increase in likelihood,
or (2) leaves it in its original cluster if no improvement can be found. There are
a number of different ways in which an initial clustering can be chosen. It has
been found that the initialization method has little effect on the final quality of the
clusters, but it can have a marked effect on the speed of convergence for the algo-
rithm. A more important variation for our purposes is how rare words are treated.
Martin et al. (1998) leave all words with a frequency of less than 5 in a particular
class, from which they may not be moved.

These techniques, using purely distributional evidence, work remarkably well
for frequent words. However, as Rosenfeld (2000b: 1313–14) points out, in lan-
guage modeling the most important task is to cluster the infrequent words. We
have sufficiently reliable information about the statistical properties of the fre-
quent words that they do not need to be smoothed with the clusters, and so it
is the infrequent words that are most in need of smoothing.14 But it is these words
that are most difficult to cluster.

Distributional data is of course not the only information relevant to identify-
ing the syntactic category of a word class. Words are not atoms, but sequences
of letters or phonemes, and this information can be used by a learning algo-
rithm. Moreover, words have relative frequency, and infrequent words will exhibit
different frequency patterns from frequent words. Pronouns, for example, tend to
be very frequent.

Consider a trivial case of the first type from written language. If we encounter
an unknown word, say £212,000, then merely looking at the sequence of characters
that compose it may well be sufficient to allow us to reliably estimate its part of
speech. Less trivially, suffixes like -ing or -ly on an English word are a strong clue
as to its lexical category.

Clark (2003) presents a method for determining how frequency and morpho-
logical information can be incorporated into this approach, and tests the method
on a number of different languages from different families. He uses texts pre-
pared for the MULTEXT-East project (Erjavec & Ide 1998), which consists of data
(George Orwell’s novel 1984) in seven languages: the original English together
with Romanian, Czech, Slovene, Bulgarian, Estonian, and Hungarian.

Table 8.2 from Clark (2003) shows the results of the cross-linguistic evaluation
of this data (to get a sense of how to interpret the values in this table it is worth
consulting Table 8.1 again).

This method was also evaluated by comparing the perplexity of a class-based
language model derived from these classes.

3.2 Unsupervised parsing
Initial experiments with unsupervised grammar induction (like those described
in Carroll & Charniak 1992) were not particularly encouraging. Far more promis-
ing results have been achieved in work over the past decade. Klein and Manning
(2002) propose a method that learns constituent structure from POS tagged input
by unsupervised techniques. It assigns probability values to all subsequences of
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Table 8.2 Cross-linguistic evaluation: 64 clusters, left all words, right f ≤ 5. We
compare the baseline with algorithms using purely distributional (D) evidence,
supplemented with morphological (M) and frequency (F) information

Base D0 D5 D+M D+F D+M+F Base D0 D+M D+F D+M+F

H(G|C) All words f ≤ 5

English 1.52 0.98 0.95 1.00 0.97 0.94 2.33 1.53 1.20 1.51 1.16
Bulgarian 2.12 1.69 1.55 1.56 1.63 1.53 3.67 2.86 2.48 2.86 2.57
Czech 2.93 2.64 2.27 2.35 2.60 2.31 4.55 3.87 3.22 3.88 3.31
Estonian 2.44 2.31 1.88 2.12 2.29 2.09 4.01 3.42 3.14 3.42 3.14
Hungarian 2.16 2.04 1.76 1.80 2.01 1.70 4.07 3.46 3.06 3.40 3.18
Romanian 2.26 1.74 1.53 1.57 1.61 1.49 3.66 2.52 2.20 2.63 2.22
Slovene 2.60 2.28 2.01 2.08 2.21 2.07 4.59 3.72 3.25 3.73 3.55

tagged elements in an input string, construed as possible constituents in a tree.
The model that this method employs imposes the constraint of binary branch-
ing on all non-terminal elements of a parse-tree. Klein and Manning invoke
an expectation maximization (EM) algorithm to select the most likely parse for a
sentence. Their method identifies (unlabeled) constituents through the distribu-
tional co-occurrence of POS sequences in the same contexts. The model partially
characterizes phrase structure by the condition that sister phrases do not have
(non-empty) intersections. Binary branching and the non-overlap requirement are
biases of the model.

Evaluated against Penn Treebank parses (Marcus 1993) as the gold standard, this
unsupervised parse procedure achieves an F-measure of 71 percent on Wall Street
Journal (WSJ) test data. This score is achieved despite a serious limitation imposed
by the gold standard. The Penn Treebank allows for non-binary branching for
many constituents. A binary branching parse algorithm of the sort that Klein and
Manning employ can only achieve a maximum F-score of 87 percent against this
standard. As it turns out, many of the algorithm’s binary constituent analyses that
are excluded by the gold standard are, in fact, linguistically defensible parses. So,
for example, while the treebank analyzes noun phrases as having flat structure, the
iterated binary branching constituent structure that the Klein–Manning procedure
assigns to NPs is well motivated on syntactic grounds.

The Klein–Manning parser is, in fact, constructed by semi-supervised, rather
than fully unsupervised, learning. The input to the learning algorithm is a corpus
annotated with the POS tagging of the Penn Treebank. If POS annotation is, in
turn, provided by a tagger that uses unsupervised learning, then the entire pars-
ing procedure can be construed as a sequenced process of unsupervised grammar
induction.15

Klein and Manning (2002) report an experiment in which their parser achieves
an F-score of 63.2 percent on WSJ text annotated by an unsupervised POS tag-
ger. They observe that this tagger is not particularly reliable. Other unsupervised
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taggers, like the one presented in Clark (2003), produce good results that might
well allow the Klein–Manning unsupervised constituency parser to perform at a
level comparable to that which it achieves with Penn Treebank tags.

Klein and Manning (2004) present an unsupervised learning procedure for
acquiring lexicalized head-dependency grammars. It assigns probabilities to pos-
sible dependency relations in a sentence S by estimating the likelihood that each
word in S is a head for particular sequences of words to its left and to its right,
taken as its syntactic arguments or adjuncts. The probabilities for these alternative
dependency relations are computed on the basis of the context in which each head
occurs. The context consists of the words (word classes) that are immediately adja-
cent to it on either side. The dependency structure model associated with the learn-
ing algorithm requires binary branching as a condition on dependency relations.
The procedure achieves an F-measure of 52.1 percent on Penn Treebank test data.

Klein and Manning (2004) combine their dependency and constituent structure
grammar induction systems into an integrated model that produces better results
than either of its component parsers. The composite model computes the score for
a tree as the product of the dependency and constituency structure grammars. This
procedure employs both constituent clustering and head dependency relations to
predict binary constituent parse structure. It achieves an F-score of 77.6 percent
with Penn Treebank POS tagging, and an F-score of 72.9 percent with Schütze’s
(1995) unsupervised tagger.

Bod (2006a; 2007a; 2007b) proposes an alternative system for unsupervised
parsing, which he refers to as unsupervised data-oriented parsing (U-DOP). U-DOP
generates all possible binary branching subtrees for a sentence S. The preferred
parse for S is the one which can be obtained through the smallest number of sub-
stitutions of subtrees into nodes in larger trees. In cases where more than one
derivation satisfies this condition, the derivation using subtrees with the highest
frequency in previously parsed text is selected. Bod (2006a) reports an F-score of
82.9 percent when U-DOP is combined with a maximum likelihood estimator and
applied to the WSJ corpus on which Klein and Manning tested their parsers.

While U-DOP improves on the accuracy and coverage of Klein and Manning’s
(2004) combined unsupervised dependency-constituency model, it generates a
very large number of subtrees for each parse that it produces. Bod (2007a)
describes a procedure for greatly reducing this number by converting a U-DOP
model into a type of PCFG. The resulting parser produces far fewer possible sub-
trees for each sentence, but at the cost of performance. It yields a reported F-score
of 77.9 percent on the WSJ test corpus (Bod 2007a).

An important advantage that U-DOP has over simple PCFGs is its capacity to
represent discontinuous syntactic structures, like subject–auxiliary inversion in
questions, and complex determiners such as more . . . than . . ., as complete construc-
tions.16 U-DOP incorporates binary branching tree recursion as the main bias of
its model. It can parse structures not previously encountered, either through the
equivalent of PCFG rules, or by identifying structural analogies between possible
tree constructions for a current input and those assigned to previously parsed
strings in a test set.
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ADIOS is another recent unsupervised algorithm for grammar induction (Solan
et al., 2005). It is interesting not so much for the algorithmic properties that it
exemplifies (these are largely taken from other models, although they are com-
bined in a novel way), but for the extensive and original method of evaluation to
which it is subjected. Solan et al. (2005) use a number of different techniques to
demonstrate the robustness of ADIOS. These include a language modeling task,
and application of the algorithm to test children’s reading comprehension.

3.3 Accuracy vs. cost in supervised, unsupervised,
and semi-supervised learning

In general supervised learning algorithms achieve greater accuracy than unsu-
pervised procedures. So LPCFG parsers trained on WSJ corpora annotated with
constituent structure information in the Penn Treebank obtain F-measures of
88 percent to 91 percent (Collins 1999; Charniak and Johnson 2005), while efficient
unsupervised parsers currently score in the mid to high 70s (Klein & Manning
2004; Bod 2007a). However, hand annotating corpora for training supervised algo-
rithms adds a significant cost that must be weighed against the accuracy that these
procedures provide. To the extent that unsupervised algorithms do not incur these
costs, they offer an important advantage, if they can sustain an acceptable level of
performance in the applications for which they are designed.

Banko and Brill (2001) use a method of semi-supervised learning that combines
some of the benefits of both systems. They train 10 distinct classifiers for a word
disambiguation problem on an annotated test set. They then run all the classi-
fiers on an unannotated corpus and select the instances for which there is full
agreement among them. This automatically annotated data is added to the origi-
nal hand annotated corpus for a new cycle of training, and the process is iterated
with additional unannotated corpora. In the experiments they describe how accu-
racy is improved through unsupervised extensions of a supervised base corpus up
to a certain phase in the learning cycles, after which it begins to decline. They sug-
gest that this effect may be due to the learning process reaching a point at which
the benefits that additional data contribute are outweighed by the distortion of
sample bias imported with the new samples, which causes overfitting of the data.

Bank and Brill’s approach can be generalized to grammar induction and pars-
ing. This would involve training several supervised parsing systems on an initial
parsed corpus and then optimizing these procedures through iterated parsing of
text containing only POS tagging. The tagging can be done automatically using a
reliable tagger.

There are, in fact, good engineering reasons for investing more research effort
in the development of robust unsupervised and semi-supervised learning proce-
dures. Very large quantities of raw natural language text are now available online
and easily accessible. While supervised grammar induction has achieved a high
level of accuracy, generating the necessary training corpora is an expensive and
time-consuming process. The use of unsupervised and semi-supervised learning
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algorithms reduces much of this expense. The amount of data that hand annotated
training sets provide is very limited in comparison to the corpora of unanno-
tated text currently available at little or no cost. As the accuracy and coverage
of unsupervised systems improves, they become increasingly attractive alterna-
tives to supervised methods. It is reasonable, then, to expect a greater focus on the
development of these systems in future NLP work.

4 Unsupervised Grammar Induction and Human
Language Acquisition

The promising results of recent work on unsupervised procedures for grammar
induction raise interesting questions for long-standing debates over the cognitive
basis for human language acquisition. Theoretical linguistics has been dominated
for the past 50 years by a strong version of linguistic nativism.17 On this view, a
set of rich, domain-specific biases provide the basis for language acquisition. These
biases are formulated as the constraints of a universal grammar, which constitutes
a biologically determined, task-specific language faculty.

The main consideration offered in support of this notion of a language faculty
is the argument from the poverty of the stimulus (APS). According to the APS the
amount and quality of the primary linguistic data available to children acquiring
their first language is not sufficient to account for the grammar that expresses adult
linguistic competence if acquisition of the adult grammar is mediated primarily
by domain-general procedures of induction, such as those applied in machine
learning. A classic instance of the APS is the use of subject–auxiliary inversion
to claim that language learners have an innate bias towards learning grammati-
cal rules formulated in terms of a hierarchical phrase structure representation of
sentences.18

(6) a. Is the student who is in the garden hungry?
b. *Is the student who in the garden is hungry?

The rule of auxiliary inversion requires that (something like) the following
structures be assigned to (6a), (6b), respectively.

(7) a. [S′ is2 [S[NP the [N′ student [RC who [VP is1 in the garden]]]] [VP [V e2]
hungry]]]

b. [S′ is1 [S[NP the [N′ student [RC who [VP e1 in the garden]]]] [VP [V is2]
hungry]]]

Advocates of the APS maintain that the data to which children are exposed does
not provide an adequate basis for inferring a structure-dependent rule of subject–
auxiliary inversion unless the children come to the task of language acquisition
already equipped with a mechanism for organizing strings of words into phrasal
constituents of the sort that facilitate the formulation of this rule.
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The APS has recently been subject to strong challenges.19 Both sides of this
debate have tended to focus on the availability of evidence for grammar induction
through data-driven methods. However, it is not possible to decide how much,
and what sort of, data is required for effective language acquisition independently
of a clearly specified theory of learning. This question is meaningful and interest-
ing only when considered in relation to a particular learning theory or class of such
theories. Linguistic nativists have generally argued for the paucity of data without
specifying a strong bias model that will generate the class of grammars which they
posit, given the set of linguistic samples which they assume as evidence. Similarly,
some critics of the APS have insisted that the child has access to sufficient linguis-
tic data to produce the grammar of his/her first language without indicating how
learning is achieved.

To the extent that machine learning algorithms can acquire accurate and the-
oretically viable grammars of languages from corpora through unsupervised
methods, employing weak rather than strong learning biases, they undermine
the APS as an argument for strong linguistic nativism.20 Specifically, they show
that it is possible to implement a learning algorithm that can effectively acquire
a significant element of human linguistic knowledge relying primarily on gener-
alized information theoretic techniques for classifying data, with comparatively
weak domain-specific constraints on the set of possible grammars in its hypothe-
sis space. As we have observed, unsupervised grammar induction has recently
yielded encouraging results for parsing WSJ text according to the gold stan-
dard given by the Penn Treebank. Moreover, Bod (2006a, 2007a), and Clark and
Eyraud (2006) present systems that learn subject–auxiliary inversion rules effi-
ciently without being exposed to sample sentences like (6a) or its full declarative
counterpart.

(8) The student who is in the garden is hungry.

However, most of these unsupervised grammar-induction procedures incorpo-
rate learning biases that restrict their hypothesis spaces to constituent structure
grammars of some kind.21 An advocate of the APS can claim that these biases
are precisely the sort of conditions that the argument is intended to motivate as
necessary learning priors for language acquisition.

In fact it is possible to argue that a preference for hierarchical constituent
structure is not, in itself, an irreducible bias on a language model. It can be
derived from a more basic and general learning prior. As we have seen, Perfors
et al. (2006) define a very general prior for smaller grammars with fewer rules
and fewer non-terminal symbols. It does not specify a bias towards constituent
structure. They apply their Bayesian posterior probability measure, given in (3)
(arg max H(P(H)P(D|H))), to a hypothesis space of three types of grammar, which
they evaluate on a subset of CHILDES (MacWhinney 1995), a corpus of child
directed discourse.

The three types of grammar that Perfors et al. (2006) consider are:

(1) a flat grammar that generates strings directly from S without intermediate
non-terminal symbols;
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(2) a probabilistic regular grammar (PRG); and
(3) a probabilistic context-free grammar (PCFG).

They compute the posterior probability of each grammar for the CHILDES sen-
tences. The PCFG receives a higher posterior probability value and covers signifi-
cantly more sentence types in the corpus than either the PRG or the flat grammar.
The grammar with maximum a posteriori probability makes the correct gener-
alization. This result suggests that it may be possible to decide among radically
distinct types of grammars on the basis of a Bayesian model with relatively weak
learning priors, when using a corpus that accurately reflects the linguistic data
that children are exposed to in the course of first language acquisition. The prior
that Perfors et al. (2006) invoke does not impose a constituent structure bias, but a
general preference for smaller, more compact hypotheses.

While the success of weak bias unsupervised ML procedures in grammar induc-
tion (and related tasks) vitiates the APS case for strong domain-specific learning
priors as necessary conditions for language acquisition, it does not tell us anything
about the actual cognitive mechanisms that humans employ in acquiring their first
language. Even discounting the APS, a strong nativist view of UG could, in prin-
ciple, turn out to be correct on the basis of the psychological and biological facts
of language acquisition.

Is there, then, any psycholinguistic evidence showing that ML methods play a
significant role in human language learning? In fact there is. Saffran et al. (1996)
report a set of experiments in which eight-month-old infants learn to identify
word boundaries in continuous syllable sequences on the basis of a two-minute
exposure to training data. The words are nonsense terms constructed out of three-
syllable sequences. The transitional probabilities between syllables within a word
are maximal (set at 1), while those between syllables crossing word boundaries are
low (generally around 0.33). The transitional probability of a syllable pair XY (X
followed by Y) is computed as the conditional probability P(Y|X) according to its
Bayesian MLE condition (where c(α) is the frequency count for the sequence α).

(9) P(Y|X) = c(XY)
c(X)

The infants were able to distinguish familiar words heard in the training sam-
ples from novel non-words on the basis of very limited exposure to a word set.
Saffran et al. (1996) conclude that they employed the difference in transitional
probabilities between word internal syllable sequences and word external pairs
in order to infer word boundaries.22

Thompson and Newport (2007) extend this experimental approach to investi-
gate the learning of phrasal boundaries and constituent structure. They describe
a series of experiments in which English-speaking adults are exposed to training
sets of samples from simple artificial languages with six word classes, each con-
taining three words (the word number of some classes is modified for one of the
experiments). Phrases consist of word pairs where each element of the pair comes
from a distinct word class. The training sets contain a canonical phrasal pattern of
word class sequences, and variations on these patterns involving:
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(1) the presence of repeated phrases,
(2) optional constituents,
(3) permutations of phrases (moved constituents), and
(4) variation in the lexical size of two of the four phrase types.

Each of the three conditions in (1)–(3) introduces a significant difference in
intra-phrasal vs. inter-phrasal transitional probabilities between word classes. The
former are set at 1, while the latter are lower. For each of these four conditions a
control group is exposed to a training set in which the conditions do not apply to
discrete phrases, but are formulated only for word classes. As a result, there is no
substantial difference in the transitional probabilities that hold between different
word class pairs in the control language.

After training, both the experimental and the control groups were tested on
their ability to identify well-formed sentential and phrasal patterns in the lan-
guage. Thompson and Newport (2007) found that for conditions (1)–(3) the
experimental group outperformed the control group in learning both sentence and
phrasal structure. When all four conditions were combined in a single language,
the difference between intra-phrasal and inter-phrasal transitions substantially
increased. In an experiment with variants of this language type in which the
two groups were exposed to a comparatively small set of canonical sentence
patterns (5 percent of the training set), the experimental subjects achieved far
greater success than the control subjects in learning both sentence and phrasal
patterns.

These results indicate that transitional probabilities can provide an important
cue for identifying constituent structure from word sequences. While the experi-
ments provide data only on syntax learning by adults, when taken together with
Saffran et al.’s (1996) research on infant identification of word boundaries, they
strongly suggest that Bayesian inference of the kind employed by ML methods in
NLP plays a significant role in human language acquisition at a variety of levels
of morphological and syntactic structure.

This work also gives credence to a bootstrapping view of language learn-
ing on which information theoretic methods yield an initial classification of
linguistic entities that can then be used to construct successive levels of repre-
sentation. Each previous cycle of learning provides a set of structural constraints
on the entities out of which the next stage is developed by the same kinds
of Bayesian inference. If this view is sustained by further research, then the
weak bias model of language learning proposed in Lappin (2005), Lappin and
Shieber (2007), and Clark (2004) will achieve psychological as well as computa-
tional credibility. Clearly much additional work remains to be done in clarifying
these issues before any such model can be endorsed with any confidence as
an account of human language acquisition. It does, however, provide a serious
alternative to the strong nativist approach that has dominated linguistics and cog-
nitive science for the past five decades, generally without a learning theory to
motivate it.
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5 Conclusion

Unsupervised learning is a rich and varied area of research. It includes differ-
ent motivations, techniques, and methods of evaluation. In this chapter we have
surveyed the field and provided an overview of what we regard as the most
significant theoretical and engineering developments.

It is important to recognize that while the application of these techniques to
practical problems in NLP is still at an early stage, unsupervised learning is almost
certain to expand as an area of interest and activity.

It is also plausible to hope that, as we make progress in understanding the capac-
ities and limits of unsupervised methods, we will achieve deeper insight into how
much and what kinds of linguistic knowledge can be acquired by domain-general
learning algorithms operating on raw linguistic data. Such insight is of direct
significance to work in theoretical linguistics and the study of human cognition.

NOTES

1 See, Chapter 18 of this book, INFORMATION EXTRACTION, Section 3.4, and Jurafsky
and Martin (2009: 455) for discussions of recall, precision, and weighted F-measures.

2 See Manning and Schütze (1999) for a discussion of Bayesian inference and the role of
Bayesian reasoning about probability in statistical NLP.

3 See Chapter 13 of this book, STATISTICAL PARSING, Manning and Schütze (1999),
and Jurafsky and Martin (2009) for accounts of probabilistic context-free grammars
and lexicalized probabilistic context-free grammars as language models for supervised
grammar induction.

4 See Lappin and Shieber (2007) and Clark (2001a, chapter 4) for discussions of some of
the problematic assumptions in Gold’s identification in the limit learning paradigm.

5 A supra-finite class includes all finite languages and at least one infinite language.
6 See, for example Crain and Thornton (1998) for arguments to the effect that, because

the class of natural languages is unlearnable from positive evidence only, a rich innate
UG must be posited to explain human language acquisition.

7 See, for example, Saxton (1997) and Chouinard and Clark (2003) for psycholinguistic
research supporting the widespread availability and effectiveness of negative evidence
in child grammar induction. See also Clark and Lappin (2009) for a proposal on how
indirect negative evidence can be stochastically modeled within a PAC framework.

8 See Chapter 2, COMPUTATIONAL COMPLEXITY, for the relevant notions of complexity
and efficiency of computation.

9 Questions have been raised about the extent to which this helps the child (Gleitman
et al., 2001).

10 The Baum–Welch algorithm (also known as the forward–backward algorithm) used
to estimate the parameter values for such models only finds a local optimum. See
Manning and Schütze (1999) for discussion of this procedure.



“9781405155816_4_008” — 2010/5/8 — 11:48 — page 220 — #24

220 Alexander Clark and Shalom Lappin

11 See Chapter 11, EVALUATION OF NLP SYSTEMS, and Chapter 10, LINGUISTIC ANNO-
TATION, for discussions of this and related issues in connection with a variety of NLP
tasks.

12 The texts were tagged automatically, which might introduce some variability.
13 See Chelba, STATISTICAL LANGUAGE MODELING, and Manning and Schütze (1999),

Section 2.2 for discussions of perplexity and entropy.
14 See Chapter 3, STATISTICAL LANGUAGE MODELING, and Pereira (2000) on the applica-

tion of smoothing techniques for statistical modeling, originally introduced by Good
(1953), in NLP.

15 Actually, an unsupervised POS tagger will also rely on morphological analysis of the
words in a corpus. This can be provided by an unsupervised morphological analyzer.
See Goldsmith (2001), Chapter 14 of this book, SEGMENTATION AND MORPHOLOGY,
and Schone and Jurafsky (2001) for alternative systems of unsupervised morphological
analysis.

16 See Clark and Eyraud (2006) for a simple unsupervised distributional algorithm that
learns a PCFG which correctly handles subject–auxiliary inversion.

17 See, inter alia, Chomsky (1965; 1971; 1981; 1986; 1995; 2000; 2005), and Pinker (1989;
1996).

18 See Chomsky (1971); Crain and Nakayama (1987); Crain (1991); Berwick and Chomsky
(2009) for versions of this argument, and Clark and Lappin (2010) for critical discussion
of it.

19 Pullum and Scholz (2002) and their critics conduct a lively debate on the APS in Volume
19 (2002) of The Linguistic Review. Scholz and Pullum (2006) offer an updated version
of some of their criticisms of the APS.

20 For detailed discussion of the relevance of work in machine learning and computa-
tional learning theory to APS-based claims for linguistic nativism see Lappin (2005);
Lappin and Shieber (2007); Clark (2004); and Clark and Lappin (2010).

21 This is not the case for the algorithm proposed in Clark and Eyraud (2006), which uses
a simple criterion of distributional congruence to identify equivalence classes of words
and phrases.

22 Yang (2004) disputes this conclusion. He reports a word identification experiment on a
subset of the CHILDES corpus using transitional syllable probabilities. The results of
the experiment indicate poor recall and precision for this procedure. As he observes,
this is due to the fact that 85 percent of the words in his test set are monosyllabic.
Therefore there is no significant distinction between intra-word and inter-word transi-
tional probabilities for most of the terms in this corpus. Yang claims that his experiment
shows that transitional probability is not an adequate cue for word boundary identi-
fication in realistic data of the sort that children receive. In fact, this claim is seriously
undermotivated. Child directed speech of the kind that appears in CHILDES does not
exhaust the linguistic samples to which children are exposed in their normal envi-
ronments. They generally have access to the full range of multi-syllabic utterances
of normal adult speech, even when it is not directed to them. There is no reason to
exclude this additional data from the range of evidence that children can make use
of when computing transitional probabilities for syllable pairs. It is not unreasonable
to hypothesize that, when one takes account of the full range of evidence available
to child language learners, a significant correlation between transitional probability
patterns and word boundaries in real language data will prove robust.


