
PAC-Learning Unambiguous NTS Languages

Alexander Clark

Department of Computer Science, Royal Holloway University of London,
Egham, Surrey, TW20 0EX

Abstract. Non-terminally separated (NTS) languages are a subclass of
deterministic context free languages where there is a stable relationship
between the substrings of the language and the non-terminals of the
grammar. We show that when the distribution of samples is generated by
a PCFG, based on the same grammar as the target language, the class of
unambiguous NTS languages is PAC-learnable from positive data alone,
with polynomial bounds on data and computation.

1 Introduction

A long term research goal in grammatical inference is to find a class of languages
which includes the natural languages, and is efficiently learnable from positive
data. One of the earliest approaches in grammatical inference, though envisioned
as a discovery procedure for linguists, rather than a model of first language
acquisition is the distributional learning approach of [Har54]. This approach can
form the basis for efficient algorithms for large scale context free grammatical
inference, [Cla06], but the precise theoretical justification is still unclear. Given
that it is possible to construct acyclic deterministic finite state automata that
are hard to learn from positive examples, it is important to identify precisely
what the language theoretic properties that allow learning to proceed are.

In this paper, we take a significant step towards this goal: we combine [CT04a]
and [CE05] to prove a PAC-learnability result in a partially distribution-free set-
ting of a class of context-free grammars from positive examples, without mem-
bership queries, structural information or any other side information except for
some parameters we use to stratify the class. [CT04a] argues that for many prob-
lems, including natural language, there is a natural distribution or set of distri-
butions, and that therefore the requirement in the standard PAC-framework for
distribution-free learnability is too strict. They therefore argue that an appro-
priate modification is to consider a suitable set of distributions modelled by a
related family of probabilistic automata (since they study finite automata).

[CE05], on the other hand, which shows the learnability of a class of “sub-
stitutable languages” is incomplete in a number of respects. Firstly, though it
demonstrates polynomial identification in the limit, this is not enough to guar-
antee efficient learnability in practice, and secondly the class of substitutable
languages is very small. For example, the language {anbn|n > 0} is not a sub-
stitutable language.

In this paper we consider context free grammars; given that distribution free
learning is too difficult, we assume the data is generated by a PCFG, so that
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the distribution will be reasonable helpful, but without trivialising the results
through possible collusion. Under this circumstance, we can then use statistical
properties of the distribution to determine whether two substrings are congruent.
The whole class of CFGs is too ambitious a goal to strive for; in this paper we
use the class of non-terminally separated (NTS) languages [BS85, Sen85].

We attempt to stratify the learnability of this by adding a number of parame-
ters that affect the complexity of learning. We use separate parameters wherever
possible to get maximum discrimination over this class of languages; as a result
some of the bounds may appear complicated, but they could be radically sim-
plified by combining bounds.

The relevance of this approach to natural language needs some explanation.
Natural languages are close to being NTS. The origin of the name is from non-
terminally separated, and indeed if we take a natural language such as English,
then given two non-terminals such as noun phrase and verb phrase, the sets of
strings that can be generated by each of these are almost disjoint. Of course,
lexical ambiguity is a problem, since a word like share can be both a noun
and a verb, but working with a suitably disambiguated representation, to a
large extent, natural languages are NTS. The underlying distributions we use
are those of PCFGs. This seems well motivated since the current state of the
art in language modelling uses just this sort of model [Cha01, JC00]. Thus the
approach we take here, starting from a linguist’s idea, is well motivated both in
terms of learnability, (the constraints on the distribution) and in terms of the
class of languages we consider. There are a number of limitations to the work
presented here which we will discuss in the conclusion.

2 Notation and Definitions

An alphabet Σ is a finite nonempty set of symbols called letters. A string w over
Σ is a finite sequence w = a1a2 . . . an of letters. Let |w| denote the length of w.
In the following, letters will be indicated by a, b, c, . . ., strings by u, v, . . . , z, and
the empty string by λ. Let Σ∗ be the set of all strings, the free monoid generated
by Σ. By a language we mean any subset L ⊆ Σ∗. u is a substring of v, written
u � v if there are l, r ∈ Σ∗ such that lur = v. The set of all substrings of a
language L is denoted

Sub(L) = {u ∈ Σ+ : ∃w ∈ L such that u � w} (1)

(notice that the empty word does not belong to Sub(L)). We will define the
number of contiguous occurrences of a substring u in w by |w|u =

∑
l,r∈Σ∗:lur=w 1,

so for example |abab|ab = 2.

2.1 Grammars

A grammar is a quadruple G = 〈V, Σ, P, I〉 where Σ is a finite alphabet of
terminal symbols, V is a finite alphabet of non-terminals, P is a finite set of
production rules, and I ⊆ V is a set of start (initial, or sentence) symbols. If
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P ⊆ V ×(Σ ∪V )+ then the grammar is said to be context-free (CF), and we will
write the productions as N → w. We will write uNv ⇒ uwv when N → w ∈ P .
∗⇒ is the reflexive and transitive closure of ⇒. The language defined by G is
L(G) = {w ∈ Σ∗|∃S ∈ I s.t. S

∗⇒ w}.
Given a set L ⊆ Σ∗ we define the syntactic congruence of L to be the relation

u ≡L v iff ∀l, r ∈ Σ∗, lur ∈ L iff lvr ∈ L. This is an equivalence relation and
indeed a monoid congruence since u ≡L v implies lur ≡L lvr for all l, r ∈ Σ∗.

2.2 NTS Languages

In this paper we are interested in the class of NTS languages.

Definition 1. A grammar G = 〈Σ, V, P, A〉 is non-terminally separated (NTS)
iff whenever N ∈ V such that N

∗⇒ αβγ and M
∗⇒ β then N

∗⇒ αMγ.

A language L is NTS if it can be described by an NTS grammar. Space does not
permit a full exposition of the properties of this class but we note first that the
class of NTS languages properly includes all regular languages, and that there
are efficient polynomial algorithms for deciding the NTS property.

NTS languages are deterministic and thus not inherently ambiguous. We shall
restrict ourselves here to unambiguous grammars – i.e. those grammars such that
every string in the language has only one (rightmost) derivation. Surprisingly,
this restriction does reduce the class of languages significantly, i.e. there are
NTS languages which cannot be described by an unambiguous NTS grammar.
Consider the language L = {an|n > 0}. This is a NTS language, and it is easy to
see that the grammar must contain at least the productions S → a and S → SS
(since S

∗⇒ aa and S
∗⇒ a). Therefore, this is ambiguous since aaa will have

at least two rightmost derivations. S ⇒ SS ⇒ Sa ⇒ SSa ⇒ Saa ⇒ aaa and
S ⇒ SS ⇒ SSS ⇒ SSa ⇒ Saa ⇒ aaa.

We will also make some other assumptions about the form of the grammar,
that do not affect the class of languages defined. In particular we assume that
there are no redundant non-terminals in the grammar, i.e. that for all N ∈
V ∃u ∈ Σ∗ N

∗⇒ u and ∃S ∈ I, l, r ∈ Σ∗ S
∗⇒ lNr. We will also assume that

there are no duplicate non-terminals – i.e. no non-terminals that generate the
same strings.

2.3 Distributions

A distribution D over Σ∗ is a function PD :Σ∗→ [0, 1] such that
∑

u∈Σ∗ PD(u)=
1. We will write supp(D) = {w ∈ Σ∗|PD(w) > 0}. For a language L ⊆ Σ∗ we
will write PD(L) =

∑
w∈L PD(w).

The L∞ norm of a function F over a countable set X is defined as

L∞(F ) = max
x∈X

|F (x)|

Note that this defines a metric (L∞(F1 − F2) = 0 implies F1 = F2), and it
satisfies the triangle inequality.
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We define ED[u] =
∑

l,r∈Σ∗ PD(lur), the expected number of times the sub-
string will occur (not the probability since it can be greater than 1). We define the
probability that we observe one or more us to be OD(u) = PD({w ∈ Σ∗ : u � w})

A context distribution C is a function from Σ∗ × Σ∗ → [0, 1] such that∑
l∈Σ∗

∑
r∈Σ∗ C(l, r) = 1.

The context distribution of a string u, where u ∈ Sub(L), is written as CD
u

and is defined as

CD
u (l, r) =

PD(lur)
ED(u)

(2)

We will normally suppress the distribution when it is unambiguous. Given a
multiset M of elements of Σ∗×Σ∗, we will write M̂ for the empirical distribution.

We define a notion of probabilistic congruence analogous to that of syntactic
congruence.

Definition 2. Given two strings u, v ∈ Σ∗ and a distribution D over Σ∗, u and
v are probabilistically congruent with respect to a distribution D, written u ∼=D v
if and only if CD

u = CD
v

2.4 PCFGs

We will concern ourselves with distributions generated by probabilistic context
free grammars. A PCFG is a CFG G = 〈Σ, V, P, I〉 together with two functions,
an initial symbol probability function, ι : I → (0, 1] and a production probability
function π : P → (0, 1] that satisfy the following constraints,

∑
S∈I ι(S) = 1 and

for all N ∈ V
∑

N→α∈P π(N → α) = 1. For any rightmost derivation we can
attach a probability which is the product of the π(N → α) of all productions
used in the derivation, and the probability of a string is then the product of the
ι(S) for the start symbol used, and the probability of the derivation: PD(u) =
ι(S)P (S ∗⇒G u) if S

∗⇒G u. (We assume here that it is unambiguous and NTS).
If a PCFG is such that

∑
w∈Σ∗ P (w) = 1 then this is a consistent PCFG, and

it defines a distribution, whose support is L(G).

3 Learnability and Parameters

Given an unambiguous NTS grammar G defining a language L(G), and assuming
that D a distribution is defined by a PCFG based on the same grammar, we can
establish the following result.

Lemma 1. if N
∗⇒G u and N

∗⇒G v then u ∼=D v.

Proof Since G is NTS, u ≡L v. Consider any l, r ∈ Σ∗ such that lur ∈ L. Let
pu = P (N ∗⇒G u) and pv = P (N ∗⇒G v) For any l, r such that S

∗⇒G lNr,
let pl,r = ι(S)P (S ∗⇒G lNr). By PCFG assumptions, P (S ∗⇒ lur) = pl,rpu and
P (S ∗⇒ lvr) = pl,rpv; therefore u ∼=D v.

Given the well-known results on learning acyclic PDFAs [KMR+94], it is nec-
essary to add some criterion for distinguishability of states. We modify the def-
inition of [RST98] to handle PCFGs as follows:
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Definition 3. A PCFG is μ1-distinguishable iff for every non-terminal N there
is a string u such that P (N ∗⇒ u) > μ1.

Note that since NTS grammars are non-terminally separated, this is sufficient
for them to be distinguishable in the sense of [RST98].

We also need to add some restrictions not on the distribution of strings gen-
erated by the nonterminals but also on the context distributions. Since we will
be using context distributions to identify the relation of syntactic congruence,
we will require the context distributions to be reasonably far apart in the L∞
norm. Clearly, given that there will be an infinite number of congruence classes,
we cannot require an absolute lower bound on the distance between context dis-
tributions. Even for regular languages, the number of congruence classes can be
exponentially large, though finite. So we will have two further requirements on
our distribution.

Definition 4. A PCFG is ν-separable for some ν > 0 if for every pair of
strings u, v in Sub(L(G)) such that u �≡ v, it is the case that L∞(Cu − Cv) ≥
ν min(L∞(Cu), L∞(Cv))

Note that according to this definition, if a language is substitutable [CE05], then
it is ν-separable with ν = 1.

Additionally we require a certain degree of concentration in the contexts. It
is easy to construct examples where the L∞ norms of the context distributions
are exponentially small, in which case we will need exponentially large amounts
of data to be able to reliable determine when two strings are congruent or not
using the separability property. Accordingly we add the following definition.

Definition 5. A PCFG is μ2-reachable, if for every non-terminal N ∈ V there
is a string u such that N

∗⇒G u and L∞(Cu) > μ2.

Clearly every PCFG is μ2-reachable for some μ2. This implies that there are
strings l, r such that P (lur) > μ2P (N ∗⇒G u). Formulating the bound in terms
of the norm of the context distribution is slightly stronger, since there might
be more than one occurrence of u in lur. Alternatively we could combine this
with distinguishability: if a PCFG is both μ1-distinguishable and μ2-reachable,
then we know that for every non terminal N there are strings l, u, r such that
ι(S)P (S ∗⇒G lNr

∗⇒G lur) > μ1μ2, and so we could simply have a single bound
corresponding to μ1μ2. While this is more compact, it is conceptually cleaner
to separate the two bounds and treat them independently – this gives a more
accurate representation of the functional dependence of the sample complexity
on these parameters.

Intuitively we require that we do not have any strings that are very frequent
but such that all of the strings that they occur in have exponentially small
probability.

4 Algorithm

We now define the algorithm PACCFG. Our primary concern here is not with
the algorithmic aspects of this, so we will present this using naive, but polynomial,
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procedures. When implementing this, we would obviously use more efficient data
structures. We will start by defining it informally.

We are given a sequence of positive strings S = w1, . . . wN . First of all we
collect all the frequent substrings, those strings that occur in more than a cer-
tain threshold m0 of these strings. For each of these frequent strings, we collect
a multiset of contexts, as follows: for a string u, we consider each data point wi

such that u � wi, calculate |wi|u, and then collect all of the contexts from this
string. Thus if we have u = a and wi = axayaz, then we add these three contexts
(λ, xayaz), (ax, yaz), (axay, z). This procedure will give at least m0 samples from
the context distribution, but these will not in general be independent; nonethe-
less we can be sure that we will have a good estimate with high probability, i.e.
that L∞(Ĉu, Cu) is small. We then form the set of all those frequent strings u
that have L∞(Ĉu) > μ2/2. We then construct a graph, where each node cor-
responds to one of these frequent substrings, and there is an arc between two
distinct nodes, if and only if the two context distributions are similar. The test
we use returns true if

L∞(Ĉ(u) − ˆC(v)) ≤ 2μ3 (3)

We design this similarity test so that we can be sure, knowing the separability
of the distribution, that it will pass only if these two substrings are probabilis-
tically congruent and thus syntactically congruent. Given this graph, we then
identify the components (i.e. the maximal connected subgraphs). All of the sub-
strings in a given component will be syntactically congruent. We will write below
[u] for the component that contains the string u. We then construct a grammar
from this, using the procedure in [CE05].

For every component we have a corresponding non-terminal. The set of initial
symbols, will be the set of components that contain one of the sentential strings
w1, . . . wn. The set of productions is defined as follows. For every letter a ∈ Σ
that is in U , we add a production [a] → a. For every string of length greater
than one, u ∈ U , we add every production of the form [u] = [v][w] where u =
vw, |v| > 0, |w| > 0; there will be |u| − 1 such productions for every string. Note
that if u ∈ U and v is a substring of u then v must occur at least as many times
as u and thus v ∈ U as well.

More formally we define the algorithm in Algorithm 1.

Proposition 1. PACCFG runs in time polynomial in the total length of strings
in the input data.

Proof (sketch) The number of substrings is polynomial, all of the computations
can be performed using standard algorithms that are polynomial in the number
of substrings.

4.1 Bounds

We now define the various bounds that are used in the algorithm and its analysis.
We start by defining the various parameters. One of the problems with CFGs is
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Algorithm 1. PACCFG algorithm
Data: A sequence of strings W = w1, w2 . . . , wn, parameters m0, ν, μ2, alphabet

Σ
Result: A context free grammar Ĝ
Find all substrings that occur at least m0 times
U={u ∈ Σ+ : |{wi|u � wi}| ≥ m0} ;
foreach u ∈ U do

Cu = {} empty list ;
foreach wi ∈ W do

if u � wi then
foreach l, r such that lur = wi do

Append (l, r) to Cu ;
end

end
end

end
Uc = {u ∈ U |L∞(Ĉu) > μ2/2} ;
E = {(ui, uj) ∈ Uc : L∞(Ĉ(ui) − Ĉ(uj)) < 2μ3}. ;
Construct a graph SG = (U, E) ;
Compute V̂ = {V1, . . . } be the set of components of the graph SG;
Compute the set of productions
P̂ = {[a] → a|a ∈ Σ} ∪ {[w] → [u][v]|w ∈ U, w = uv} ;
Select the initial symbols : Î = {N ∈ V̂ |wi ∈ N̂}. ;
output Ĝ = 〈Σ, V̂ , P̂ , Î〉;

that the strings can be exponentially large, even if we observe a low expected
length in the sample, the true expectation could still be exponentially large
because there might be a very rare nonterminal that generates very long strings.
We need to have a loose bound on the expected number of substrings, so that
we can bound the number of possible context distributions we need to estimate:
this only appears in a logarithmic bound so it is not very significant. Thus we
require the following upper bound L where

∑

w∈Σ∗

1
2
|w| (|w| + 1)PD(w) ≤ L (4)

We have precision and confidence parameters, ε and δ, alphabet size |Σ|, an
upper bound on the number of non-terminals of the grammar, n, and on the
number of productions p. We will assume an upper bound on the length of the
right hand sides of the productions of l. We also require that the distribution
is μ1-distinguishable, μ2-reachable and ν-separable. Given these constraints we
define the following quantities.

ε2 =
ε

p + n
(5)

μ3 =
νμ2

16
(6)
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M =
2

μl
1ε2

(7)

δ1 = δ/4 (8)

δ2 =
δ2
1

LM
(9)

(10)

The threshold for the counts of substrings is m0:

m0 = max
(

1
2μ2

3
log

8
μ3δ2

,
1
μ3

log
128
δ2μ3

, 4 log
p

δ1

)

(11)

The total number of strings we require, the sample complexity is N :

N = m0M (12)

Given these quantities, we will now state and prove a series of propositions
showing that with high probability, the samples we draw will have the right
properties. We assume that the data is being generated by a PCFG with the
properties discussed above. We draw N strings w1, . . . , wN .

Proposition 2. With probability greater than 1 − δ1,

N∑

i=1

1
2
|wi|(|wi| + 1) ≤ NLδ−1

1 (13)

Proof By the definition of L the expectation of the left hand side is less than
NL. Using the Markov inequality establishes the result.

Therefore we can see that the total number of strings with counts above m0
will be at most NLδ−1

1 m−1
0 = MLδ−1

1 . We will divide the productions into two
sets, a set of frequent productions, that we expect to observe a significant number
of, and a set of infrequent productions, that will constitute a source of errors.
For every production N → α in the set of productions P , we define the set of
strings that use that production

W (N → α) = {w ∈ Σ∗ : ∃S ∈ I, ∃β, γ ∈ (V ∪Σ)∗ s.t. S
∗⇒G βNγ ⇒ βαγ

∗⇒ w}

A production is ε2-frequent if PD(W (N → α)) > ε2.

Proposition 3. For every ε2-frequent production N → α in P , with probability
at least 1 − δ1, there will be a string u such that α

∗⇒ u, and that u occurs in at
least m0 strings.

Proof There must be a string u such that α
∗⇒ u and P (α ∗⇒ u) > μl

1, by
the distinguishability, and the fact that |α| ≤ l. Therefore OD(u) ≥ ε2μ

l
1. We

have that N > 2m0ε
−1
2 μ−l

1 therefore given N samples we would expect for any
given production, using Chernoff bounds, the probability of seeing less than m0
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occurrences to be less than e−Nε2μl
1/8. Since there are at most p productions we

will require

e−Nε2/8 < e−m0/4 <
δ1

p
(14)

which is satisfied by m0 > 4 log p
δ1

.

For every initial symbol S ∈ I, we define I(S) = {w : S
∗⇒ w}. An initial

symbol is ε2-frequent iff PD(I(S)) > ε2.

Proposition 4. For every ε2-frequent initial symbol S, with probability at least
1− δ1 there will be a string u such that u occurs at least m0 times in the sample
and S

∗⇒ u.

Proof Since it is ε2-frequent we know that ι(S) > ε2. Since the PCFG is μ1-
distinguishable we know that there must be a string u such that P (S ∗⇒G u) >
μ1, therefore there must be a string with PD(u) > μ1ε2. Since N > 2m0μ

−1
1 ε−1

2 ,
using Chernoff bounds we expect for a given symbol S, the probability of not
seeing this string to be less than e−Nμ1ε2/8. Since there are at most n initial
symbols, we will require

e−Nε2μ1/8 <
δ1

n
(15)

which is satisfied by m0 > 4 log n
δ1

, which is a weaker bound.

Proposition 5. Assuming that the bound above holds, with probability at least
1 − δ1, for every substring u with count greater than m0, L∞(Ĉu, Cu) < μ3.

Proof The following lemma can be proved, using techniques similar to those in
[CT04b]. The important difference is that even though the strings may be drawn
from the distribution independently, the draws from the context dstribution will
not be independent, since the same substring may occur more than once in
a single string, and thus there will be dependencies. Fortunately, the Bernouilli
indicator variables associated with each context are negatively associated [DR98]
and thus we can still apply Chernoff/Hoeffding bounds.

Lemma 2. For any context distribution D, for any ε′ > 0 and any δ′ > 0, given
N ′ samples drawn from D, which are negatively associated [DR98], where

N ′ > max
(

1
2ε′2

log
8

ε′δ′
,
1
ε′

log
128
δ′ε′

)

(16)

the empirical distribution Ŝ of the samples will satisfy L∞(Ŝ − D) < ε′, with
probability at least 1 − δ′.

Using the assignments δ′ = δ2 and ε′ = μ3, establishes the result, given the
bound on the number of substrings given above.

If all of these properties hold, then we say that the sample is m0, μ3-good.
We now come to the most important step; this lemma establishes that the

comparison of the context distributions will give the right answer.
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Proposition 6. If the sample is m0, μ3-good, then whenever we have two strings
u, v whose counts are at least m0, and such that L∞(Ĉu) > μ2/2 and L∞(Ĉv) >
μ2/2 then L∞(Ĉu, Ĉv) < 2μ3 if and only if u ≡L v.

Proof Since L∞(Ĉv) > μ2/2, and the sample is good, we know that L∞(Cv) >
μ2/4. (and similarly for v). Suppose u and v are not congruent, then since the
distribution is ν-separable, we know that L∞(Cu, Cv) ≥ νμ2/4 = 4μ3. Since the
sample is good, we know that L∞(Ĉu, Cu) < μ3 and L∞(Ĉv, Cv) < μ3. Therefore
by the triangle inequality L∞(Ĉu, Ĉv) > 2μ3. Conversely if they are congruent,
then Cu = Cv, and by the triangle inquality L∞(Ĉu, Ĉv) < 2μ3.

Proposition 7. If the number of samples exceeds N then the sample is good
with probability at least 1 − δ.

Proof With probability at most δ1 the strings are too long, with probability
at most δ1 some frequent production does not occur at least m0 times. With
probability at most δ1 the sample is m0, μ3-good. Therefore the total probability
this not being the case is less than δ. QED

5 Proof

Having established these proposition we can now prove the correctness of the
algorithm. We now work under the assumption that the sample is good and show
that in this situation the algorithm produces a hypothesis with small error.

First of all, we show that the hypothesized language will be a subset of the
target language. Here the proof is very similar to [CE05]. For a string of terminal
and non terminal symbols α ∈ (V ∪ Σ)+, we can define w(α) to be the set of
strings of Σ∗ formed by replacing every element of N ∈ V with one of the strings
w in the component corresponding to N . So if N1 = {u1, u2} and N2 = {v1, v2v3}
and α = aN1bN2, then w(α) = {au1bv1, au1bv2, au1bv3, au2bv1, au2bv2, au2bv2}.
If α ∈ Σ∗ then w(α) = {α}, and if α = N ∈ V̂ then w(N) is precisely the set of
substrings in that component of the substitution graph.

Lemma 3. For every α, u ∈ w(α) and v ∈ w(α) implies that u ≡L v.

Proof If u and v are in the same component, then they are congruent. Since
syntactic congruence is a monoid congruence the result holds, by induction on
the length of α.

Lemma 4. For all v ∈ Σ∗, for all α ∈ (V ∪ Σ)∗, α
∗⇒Ĝ β and u ∈ w(α), v ∈

w(β) implies u ≡L v

Proof By induction on the length of the derivation α
∗⇒Ĝ β. Suppose we have a

derivation of length 0, i.e. α = β, then the previous lemma establishes the result.
Otherwise suppose it is true for all derivations of length at most k. Suppose we
have a derivation α ⇒Ĝ α′ ∗⇒Ĝ β, and suppose u ∈ w(α) and v ∈ w(β).



PAC-Learning Unambiguous NTS Languages 69

There are two possibilities. Suppose the production used in the derivational
step α ⇒Ĝ α′ is of the form N → QR, where N, Q, R ∈ V̂ . Then α = βNγ,
and α′ = βQRγ for some β, γ. Since u ∈ w(α), we must have u = uβuNuγ ,
uβ ∈ w(β), uγ ∈ w(γ). Pick an element of uQ ∈ w(Q), and uR ∈ w(R). Clearly
u′ = uβuQuRuγ ∈ w(α′) , and therefore by the inductive hypothesis u′ ≡L v.
Since there is a production N → QR in the grammar Ĝ, it must be the case that
uN was in the same component as uQuR. Therefore uN ≡L uQuR, which implies
u ≡L u′, which establishes that u ≡L v. Alternatively suppose the production
used is of the form N → a. As before we have u′ = uβauγ . By the inductive
hypothesis u′ ≡L v, and by the construction of the grammar we have a ∈ w(N)
therefore u ≡L v. QED

Lemma 5. L(Ĝ) ⊆ L(G)

Since w(u) = {u}, it immediately follows from the previous lemma that if α
∗⇒Ĝ

u and α
∗⇒Ĝ v, then u ≡L v. Suppose we have some u ∈ L(Ĝ), then ∃S ∈ Î

such that S
∗⇒Ĝ u. Since S ∈ Î there must have been a string v ∈ L(G) which

occurred frequently and is thus in w(S). Therefore v ≡L u, which means that
u ∈ L(G). QED

Now we prove that the error will be small.

Lemma 6. PD(L(G) − L(Ĝ)) < ε

First of all we define the error set to be

Lerror =

⎛

⎝
⋃

N→α∈P :PD(W (N→α))<ε2

W (N → α)

⎞

⎠ ∪
⋃

S∈I:PD(I(S))<ε2

I(S) (17)

We can define a partial mapping φ from the non-terminals in G to those in Ĝ,
(from V → V̂ ). If N ∈ V , then since it is μ1-distinguishable we will have at least
one frequent string uN , since it is μ2-reachable, the context distribution will have
sufficently large norm, therefore there will be at least one non-terminal [uN ] in Ĝ.
Every string u ∈ U such that N

∗⇒ u, will be congruent to uN and thus, since the
sample is good, it will be in the same component. Therefore there is a unique non
terminal in V̂ corresponding to N , and thus φ is well defined. Define φ(a) = a
for every letter a ∈ Σ and then extend it to (VG ∪ Σ)+. For every ε2-frequent
production N → α, we will also have a frequent string u such that α

∗⇒G u.
Write α = α1 . . . αk where k = |α|,αi ∈ Σ ∪ V and let u = u1, . . . un where
αi

∗⇒ ui. By the construction of the set of productions we will have productions
[u] → [u1][u2 . . . un], [u2 . . . un] → [u2][u3 . . . un] up to [un−1un] → [un−1][un].
Since for all of these productions [ui] = φ(αi) we have that φ(N) ∗⇒Ĝ φ(α).
Similarly since the sample is good we will have that the non-terminal symbol
S will be in the initial set, if it is frequent. Thus if u ∈ L − Lerror, there will
be a derivation S ⇒G α1 ⇒G · · · ⇒G αk ⇒G u, for some S ∈ I; since u is not
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in Lerror all of the productions will be frequent and therefore there will be a
derivation φ(S) ⇒Ĝ φ(α1) ⇒Ĝ . . . φ(αk) ⇒Ĝ u, and thus u ∈ L(Ĝ). Therefore
L(G) − L(Ĝ) ⊆ Lerror, and since PD(Lerror) < (p + n)ε2 = ε we have the
result. QED

Theorem 1. If the sample is μ3 good then PACCFG will generate a hypothesis
grammar which is a subset of the target language and with error less than ε.

6 Discussion

There are no directly comparable results for PAC-learning context free gram-
mars. [Adr99] uses simple distributions in the Kolmogorov sense and membership
queries to prove a learnability result for a class of rigid categorial grammars, but
the proof is incomplete.

The results here are still incomplete – we are still in some sense hiding a
language theoretic property in terms of a distributional property. The same
problem occurs with the learning of DFAs in [RST98] – essentially we have some
automata which will generally have exponentially small distinguishability. The
best way of viewing this is that we have a parameter that measures the difficulty
of learning some languages – the difficulty is affected both by the language
and the distribution. This approach is worse, because while every PDFA is μ-
distinguishable for some μ, it appears not to be necessarily the case that there
will always be a polynomial that will bound the separability, though we have
not yet managed to construct a counter-example.

Putting the bounds together and ignoring log factors we have, for a grammar
G = 〈Σ, V, P, I〉 the sample complexity of O

(
|V |+|P |
εμl

1μ2
2ν2

)
. The presence of the term

μl
1 is worrying. It is not always the case that one can convert an NTS grammar

to a CNF grammar while preserving the NTS property. Thus l could in principle
be large. However, a very slight strengthening of the NTS property, requiring
the reduction system to be weakly confluent on Sub(L) allows this reduction
to take place, and thus allows l to be at most 2. Thus the sample complexity
is not excessively high, and establish that polynomial learnability of interesting
context free languages is an achievable goal.

This is a step towards a long term research goal of grammatical inference
– finding a simple class of languages/distributions, defined in domain-general
terms, that is provably learnable, in some practical sense, and includes observed
natural languages. The class we present here is too limited in a number of re-
spects; most importantly, the requirement that the grammars are unambiguous
is too sharp, and we hope to remove this in future work. Additionally, just as
our definition of separability allows a certain amount of overlap between the
contexts of non congruent substrings, it might be possible to go beyond NTS
languages, by allowing a limited amount of overlap between the strings generated
by distinct non-terminals.
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