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Abstract. Angluin showed that the class of regular languages could be
learned from a Minimally Adequate Teacher (mat) providing member-
ship and equivalence queries. Clark and Eyraud (2007) showed that some
context free grammars can be identified in the limit from positive data
alone by identifying the congruence classes of the language. In this paper
we consider learnability of context free languages using a mat. We show
that there is a natural class of context free languages, that includes the
class of regular languages, that can be polynomially learned from a mat,
using an algorithm that is an extension of Angluin’s lstar algorithm.

1 Introduction

The inference of context free languages is in a less developed state than the study
of the inference of regular languages. Angluin [2] showed that a simple criterion,
reversibility, could be used to identify a class of regular languages from positive
data alone using Deterministic Finite Automata (dfas). This approach has two
parts; first basing the states of the learned automata on the residual languages
or right congruence classes of the language, and secondly a simple test for telling
whether two strings are in the same class. Later, she showed [3] that a much
larger class, indeed the class of all regular languages, could be learned using a
richer model, the Minimally Adequate Teacher (mat) model. In this model the
learner is provided with two sources of information about the language. First,
the learner can ask membership queries — for a given string the learner can find
out whether that string is in the language — and secondly the learner can ask
equivalence queries — the learner provides the teacher with a hypothesis, and the
teacher will either confirm that it is correct, or it will provide the learner with a
counter-example. The algorithm lstar is a classic and well-studied algorithm; it
uses the same representational idea — the states again correspond to the residual
languages, but the test for equivalence of strings is much more sophisticated,
using a series of test suffixes to define the equivalence classes.

When it comes to context free inference, Clark and Eyraud [1] showed a re-
sult which is an exact analogue of the first paper of Angluin. They show that a
learnability result could be established from positive data alone, by combining
a representational decision – the non-terminals correspond to the syntactic con-
gruence class – with a simple test – weak substitutability. In this paper we try



to extend this approach to produce an algorithm for context free grammatical
inference that is similar to the lstar algorithm. In the process, we will borrow
some ideas and terminology from [4]. We will make equivalence queries where
the hypothesis may not be in the learnable class – this is sometimes called an
Extended Minimally Adequate Teacher [5].

The minimal dfa has a special status – there is a bijection between the
states of the automaton and the residual languages. Though it is “minimal” it
may be exponentially larger than the smallest non-deterministic automaton for
the same language. We can consider the equivalent construction for cfgs to be
where we have a correspondence between the congruence classes of the language
and the non-terminals of the grammar – we define these precisely in Section 2.
An important difference is that the number of congruence classes of a language
will be infinite if it is not regular. We will therefore only model some finite subset
of the congruence classes; as a result the class of languages that we can learn is
limited, and as we shall see in Section 3, does not correspond to the class of all
context free languages. In this algorithm we will use an observation table that is
similar to that used in the lstar algorithm, but one that consists of substrings
and contexts, rather that prefixes and suffixes (Section 4). In the remaining
sections of the paper, we will define the algorithm and prove its correctness and
polynomial efficiency in the standard way.

2 Notation

We have a finite non-empty alphabet Σ which is known; we use Σ∗ to be the set
of all finite strings of Σ, and λ is the empty string. A language is a subset of Σ∗.
A context (l, r) is just a pair of strings; an element of Σ∗×Σ∗. The distribution
of a string CL(w) = {(l, r)|lwr ∈ L}. We define (l, r)�u to be lur – the wrapping
operation which combines a context with a substring, and we extend this to sets
of contexts and sets of strings in the natural way. We will write Sub(w) for the
set of all substrings of a string, so Sub(w) = {u|∃l, r ∈ Σ∗, lur = w}.

Two strings are congruent with respect to a language L, written u ≡L v iff
CL(u) = CL(v). This is an equivalence relation and we write [u]L = {v|u ≡L v},
for the equivalence class of u.

This elementary lemma [1] establishes the basis for this learning approach:

Lemma 1. For any language L, if u ≡L u′ and v ≡L v′ then uv ≡L u′v′.

This means that we can define a concatenation operation between these
classes: [u] ◦ [v] = [uv]. This is a monoid, as it is associative and contains a
unit [λ]; it is called the syntactic monoid: Σ∗/ ≡L.

3 Objective CFGs

Our representations are context free grammars (cfg). We define a very slightly
non-standard definition of a cfg. A cfg is a tuple 〈Σ, V, P, I〉 where Σ is a set



of terminal symbols, V is a finite non-empty set, (non-terminals), I is a non-
empty subset of V , the set of initial symbols, and P is a finite set of productions
of the form V × (V ∪ Σ)∗, which we write N → α, where N ∈ V , and α
is a possibly empty string of terminal and non-terminal symbols. We define a
standard derivation relation γNδ → γαδ, when N → α ∈ P , and let ∗⇒G be the
transitive reflexive closure of this relation. We define L(G, A) = {w|A ∗⇒G w}
and L(G) =

⋃
S∈I L(G, S). Note that we allow multiple start symbols. Clearly

this does not change the class of languages that can be defined, since we could
add one more symbol S′ and add productions S′ → S for all S ∈ I. Secondly,
we will allow the alphabet Σ to be empty. We will consider the case of cfgs
in Chomsky Normal Form (CNF): all productions are of the form N → PQ, or
N → a or N → λ. While in general we can assume w.l.o.g. that grammars are
in CNF, this assumption might in this case limit the class of languages that can
be represented.

3.1 Congruential grammars

We are interested in grammars where there is a relation between the non-
terminals and the congruence classes. We say that a cfg G is congruential if
for every non-terminal N it is the case that L(G, N) is a subset of a congruence
class of L(G); i.e. if N

∗⇒ u and N
∗⇒ v implies that u ≡L(G) v. This means

that L(G, N) will be a subset of a congruence class but each non-terminal need
not generate every string in the congruence class. Note that this differs from the
definition of congruential given in [6].

There are a few interesting properties of these grammars: first, note that
we can assume w.l.o.g. that we only have one non-terminal for each congruence
class. If we have two non-terminals that both generate strings from the same
congruence class [w] then we can clearly merge them, without changing the
language defined by the grammar. That is to say, if N

∗⇒ u and u ≡L v, then if
we add productions so that N

∗⇒ v then this will leave the language unchanged.
Secondly, the binary productions will all be of the form [u] ◦ [v] → [u][v].

We consider a simple example: the context-free language L = {anbn|n ≥ 0}.
This has an infinite number of congruence classes including the following five:
[λ] = {λ}, [a] = {a}, [b] = {b}, [ab] = {ab, aabb, . . . } = L \ {λ} and [aab] =
{aab, aaabb, . . . } Let us define a cfg whose non-terminals correspond to these
5 congruence classes; we will label them as Z,A, B, S, T . We have productions
Z → λ, S → AB, S → TB , T → AS, A → a and B → b. It is easy to verify
that this is congruential in that L(G, A) = [a], L(G, B) = [b], L(G, S) = [ab] and
so on. The set of initial symbols is I = {S, Z}; we see that L(I) = L.

Definition 1. Let Lccfg to be the set of all languages definable by a congruential
cfg.

Space does not permit a full exploration of the relationship of this class to
other learnable classes, but we can make a few basic points. We can assume that
the grammar is in Chomsky Normal Form, as we discuss below.



First note that Lccfg includes all regular languages. Regular languages have
only a finite number of congruence classes [7]. We can therefore construct a
grammar which has one non-terminal for every congruence class of a regular
language L, together with the set of productions [a] → a, and [uv] → [u][v],
[λ] → λ; it is trivial to show that this will have the property that [u] ∗⇒ u for
all u, and thus if we set I = {[u]|u ∈ L}, we will have a grammar in Lccfg that
defines the language L.

Secondly, Lccfg includes all NTS languages [6]. An NTS grammar is a gram-
mar such that for any non-terminals N,M and strings l, w, r if N

∗⇒ w and
M

∗⇒ lwr then M
∗⇒ lNr. NTS grammars are clearly congruential. Suppose G

is an NTS grammar defining a language L. Suppose N
∗⇒ u and lur ∈ L, and

N
∗⇒ v. then there is an S ∈ I such that S

∗⇒ lur; and therefore by the NTS
property, S

∗⇒ lNR
∗⇒ lvr; and so u ≡L v. Moreover, if α ∈ (V ∪ Σ)+ then if

α
∗⇒ u and α

∗⇒ v then u ≡L v, by induction on the length of α using Lemma 1.
Therefore we can binarise the right-hand sides of the rules of G; the resulting
grammar may not be NTS but will still be congruential.

Not all CFLs are in Lccfg . In particular, languages which are a union of in-
finitely many congruence classes are not. For example, the languages {anbm|n >
m > 0}, and {anbn} ∪ {anb2n} are not in Lccfg for exactly this reason. Simi-
larly, this class does not include the palindrome language over a, b or the even
palindrome language over a, b and thus does not include the class of even linear
languages [8]. However Lccfg does include the substitutable CFLs [1], and the
k-l-substitutable languages [9]. As we shall see it includes the Dyck language,
which is neither substitutable, linear nor regular.

We conjecture that the classes of NTS languages, pre-NTS languages and con-
gruential languages all coincide, though the corresponding classes of grammars
are clearly distinct, but the exact relationships are still not fully established.

4 Observation table

We now define the basic data structure that we will use which is a modification
of the observation table used by Gold[10] and Angluin [3].

It is an observation table which consists of a non-empty finite set of strings
K a non-empty finite set of contexts F and a finite function mapping F �KK
to {0, 1}. Since K always contains λ, K is a subset of KK. Given a context (l, r)
in F and a substring w ∈ KK, we have a 1 in the table if lwr is in the language
and a 0 if it is not. We will write this as a tuple 〈K, D, F 〉, where D is the set
of grammatical strings in F �KK. Figure 1 illustrates a simple example.

For two strings u, v ∈ KK we say they are equivalent if they appear in
the same set of contexts; and we write this u ∼F v; in Angluin’s terms this is
row[u] = row[v]. This means that CL(u) ∩ F = CL(v) ∩ F . Note that if u ≡L v
then u ∼F v for any set of contexts; conversely, if it is not the case that u ≡L v
then we can find some context (l, r) such that if (l, r) ∈ F , it is not the case that
u ∼F v. Of course, our set of contexts may be too small, in which case we may



(λ, λ) (a, λ) (λ, b) (λ, ab)

λ 1 0 0 1
a 0 0 1 0
b 0 1 0 0
ab 1 0 0 0

(λ, λ) (a, λ) (λ, b) (λ, ab)

aab 0 0 1 0
abb 0 1 0 0
aa 0 0 0 0
ba 0 0 0 0
bb 0 0 0 0
bab 0 0 0 0
aba 0 0 0 0
abab 0 0 0 0

Fig. 1. Observation table for L = {anbn|n ≥ 0}. We have F =
{(λ, λ), (a, λ), (λ, b), (λ, ab)}, which has 4 elements; these head the 4 columns in the
diagram. Each row corresponds to an element of KK. K consists of the 4 strings
λ, a, b, ab. We have split the table into two parts; on the left we have K, and on the
right we have KK \K.

have u ∼F v even though u and v are not congruent. In general we will want to
increase F so that this does not happen.

4.1 Construction of grammar

Given an observation table we can construct a CFG from it in a fairly straight-
forward way. First we assume that we have all the information we need: no holes
in the table. In the learning model we use, we will have a membership oracle
Mem, and we can use this to fill in the cell of the table corresponding to context
(l, r) and substring u, by querying Mem(lur).

Definition 2. An observation table, K, F,D is consistent if for all u1, u2, v1, v2

in K, if u1 ∼F u2 and v1 ∼F v2, then u1u2 ∼F v1v2.

If a table is not consistent, then we know that we do not have a large enough
set of features, by Lemma 1 and we could add additional features until it is
consistent.

Algorithm 1 selects appropriate contexts to make sure that the table is con-
sistent. We want to limit the number of contexts we add; note that every time
we add a context we will increase the number of congruence classes of K. Thus
it is clear that Algorithm 1 will terminate after at most |K| iterations. We use a
similar approach in Algorithm 3. However, though the number of iterations that
Algorithm 1 will make is bounded, we do not yet see how to bound the total
run-time of the algorithm as the length of the contexts being generated might
become very large. It is also not necessary to have a consistent table; if the table
is inconsistent, then we may generate a grammar which will have two rules of
the form N1 → AB and N2 → AB, for distinct non-terminals N1 and N2.

Algorithm 2 presents the algorithm for constructing the grammar from an
observation table. This runs in polynomial time, and always returns a valid cfg.
We will refer to the output of this algorithm as G(K, D, F ).



Data: K, D, F ;
Result: A set of features that is consistent
while 〈K, D, F 〉 is not consistent do1

Find u1, u2, and v1, v2 in K, and (l, r) ∈ F such that u1 ∼F u2 , v1 ∼F v2,2

lu1v1r ∈ D, and lu2v2r is not in D ;
if Mem(lu1v2r) = 1 then3

F ← F ∪ {(l, v2r)};4

end5

else6

F ← F ∪ {(lu1, r)};7

end8

Use Mem() to increase D to fill in the observation table ;9

end10

return F ;11

Algorithm 1: MakeConsistent

Data: K, D , F ;
Result: A Context Free Grammar G
Divide K into equivalence classes according to ∼F ;1

Let V be the set of these equivalence classes ;2

Let I = {N ∈ V |∀w ∈ N, w ∈ D} ;3

P ← {N → a|a ∈ N ∩Σ} ;4

P ← P ∪ {N → PQ|u ∈ P, v ∈ Q, w ∈ N, uv ∼F w} ;5

P ← P ∪ {N → λ|λ ∈ N} ;6

return G = 〈Σ, V, P, I〉;7

Algorithm 2: MakeGrammar

5 Adding features

There are two sorts of errors to deal with; undergeneration and overgeneration.
The more difficult one is to cope with overgeneralisation, so before we define
the full algorithm, we will discuss how this is dealt with. First, if the partition
of KK into classes is correct, then we will not overgeneralise; that is to say,
if for any u, v in KK, we have that u ∼F v implies u ≡L v, then we will not
overgeneralise. If we overgeneralise, then there must be two strings w1, w2 in KK
that appear to be congruent but are not. So we need to add a feature/context
to have a more fine division into classes so that the two strings w1 and w2 are
in different classes.

The categories are equivalence classes of KK under ∼F , that contain at
least one element of K. We will consider the categories to be subsets of KK,
and write w ∈ X, where X is one of these categories. Note that some elements
of KK will not be in a category, if they do not contain any element of K. These
will correspond to congruence classes that we do not model, but are aware of.

In Algorithm 3 we are given a derivation that is incorrect: we have a deriva-
tion of a string w from a non-terminal X such that we know that w is not con-
gruent to the strings in X. Formally we have a context (l, r) such that X

∗⇒ w



and lwr ∈ L(G) \ L, and yet there is a w′ ∈ X such that lw′r ∈ L. We return a
context that splits some category X in the grammar. We say that a category X
is split by a context (l, r) if there are u, v ∈ X such that lux ∈ L and lvx 6∈ L.

We will explain the algorithm informally: suppose we have a non-terminal
X, that generates a string w. X corresponds to a subset of strings in KK, say
{x1, . . . xk}. Ideally we will have that w is congruent to all of these xi and that
all of these xi are congruent to each other. Suppose we observe that this is not
the case and that w has some context that an xi does not. If some of the xi

have it and some do not, then we can use this to split the category X. Otherwise
it might be that all of the xi are in fact congruent to each other, and that the
problem is with some other productions. Consider a derivation of w from X.

Suppose the derivation starts with the production X → Y Z, such that Y
∗⇒ u

and Z
∗⇒ v and w = uv. We will have two strings u′, v′ ∈ K and u′v′ ∈ KK

such that u′ is in the category Y , v′ ∈ Z and u′v′ ∈ X, and lu′v′r ∈ L. Now
crucially, we know that w = uv is not congruent to u′v′; since the context (l, r)
distinguishes them. Therefore either u is not congruent to u′ or v is not congruent
to v′, or possibly both are not congruent. If they were both congruent, this would
violate Lemma 1. Note that we might have that u = u′ or v = v′ in which case we
know immediatxely which of the pair is different. Suppose not; then we consider
the intermediate string u′v. If lu′vr ∈ L, then we know that u′ has the context
(l, vr) but u does not. If lu′vr 6∈ L then we know that v′ has the context (lu′, r)
and v does not. We then recurse.1

When we reach a leaf, we know that the algorithm must terminate. Since K
contains the strings of length 1, if our derivation is of the form X → a, then we
know that the feature (l, r) will split it, since a ∈ X by construction.

Lemma 2. Algorithm 4 works in polynomial time in |w| and |K|; and termi-
nates with a set of features such that the derived grammar no longer generates
w.

Proof. We can prove that FindContext will always find a context that splits a
class of KK. Since we can have at most |K|2 equivalence classes, it will terminate
after adding at most |K|2 new contexts.

More generally we can see that, as with Binary Feature Grammars [4], if we
increase F then we decrease the language defined by the grammar.

Lemma 3. Suppose F1 ⊆ F2 and Gi = G(K, D, Fi). If u ∈ K, we write Ni[u]
for the category in Gi that contains u. For all u ∈ K, if N2[u] ∗⇒G2 v then
N1[u] ∗⇒G1 v

Proof. Note that since F2 is bigger than F1 and they are based on the same
data, u ∼F2 v implies u ∼F1 v. We prove the result by induction on length of
derivation. It is clearly true for strings of length 1, since if u ∼F2 a, u ∼F1 a.
Suppose true for all strings up to length k, and let v be a string of length
1 A slightly more complex and efficient approach would be to consider also uv′ and

possibly add two contexts if necessary.



Data: A finite set of strings K, a finite set of contexts F , a finite set of strings
D, and a triple X,(l, r),w, where w is a string, (l, r) is a context, X is a

non-terminal such that X
∗⇒ w;

and lwr ∈ L(G) \ L ;
Result: A context that splits some category of G
if (l, r) splits X then1

return (l, r);2

end3

else4

Let X → Y Z
∗⇒ uv = w be a derivation of w such that Y

∗⇒ u, Z
∗⇒ v;5

Find a pair of strings u′, v′ ∈ K such that u′ ∈ Y, v′ ∈ Z, u′v′ ∈ X ;6

if Mem(lu′vr) = 1 then7

return FindContext(Y, (l, vr), u);8

end9

else10

return FindContext(Z, (lu′, r), v);11

end12

end13

Algorithm 3: FindContext

k + 1, N2[u] ∗⇒G2 v. Expanding the first step of this derivation, there must be
N2[u] → N2[x]N2[y], where x, y ∈ K, where N2[x] ∗⇒G2 p and N2[y] ∗⇒G2 q and
v = pq. By the inductive hypothesis, we have that N1[x] ∗⇒G1 p and N1[y] ∗⇒G1 q.
We know that by construction of G2 and its consistency, we have u ∼F2 xy;
therefore u ∼F1 xy, therefore there is a production N1[u] → N1[x]N1[y], and
therefore N1[u] ∗⇒G1 v and the result follows.

6 Algorithm

We now informally describe our algorithm: we maintain a set of strings K, a
set of contexts F and some data D. We initialise K = {λ} and F = {(λ, λ)}.
We fill in D using the membership oracle. We make it consistent, generate a
grammar and then query. Note that we only want to add strings to the grammar
as a result of counter-examples. Since the class of grammars includes ones which
define languages where every string is exponentially large in the number of non-
terminals, we need to wait until we are given a long string; otherwise we will
violate the polynomial bound.

If the grammar is correct, then we terminate; otherwise if we overgenerate,
we add more features until we no longer generate that string. If, on the other
hand we undergenerate, then we add more strings to K to increase the number
of congruence classes of the languge that we generate.

Suppose the target G = 〈V, P, I〉 is a congruential cfg in CNF; and let V ′

be a subset of V . we say that K is sufficient for V ′ if it contains one string from
each non-terminal yield; i.e. for all N ∈ V ′ there is a string u ∈ K such that
u ∈ L(G, A).



Data: K, D, F and a string w that is not in L
Result: A set of features including F , such that the grammar does not generate

w
G← MakeGrammar(K,D,F);1

while G generates w do2

Suppose S
∗⇒ w for some S ∈ I ;3

f be FindContext(S,(λ, λ), w) ;4

F ← F ∪ {f} ;5

Increase D = L ∩ (F �KK) using Mem() ;6

G = MakeGrammar(K,D,F) ;7

end8

return F ;9

Algorithm 4: AddContexts

Lemma 4. If K is sufficient for V ′, and F is consistent, then let Ĝ = G(〈K, D, F 〉)
denote w(N) for a string in K for some N ∈ V ′. Then for every derivation of
a string in G, that contains only non-terminals of V ′ say N

∗⇒G w, we have a
derivation in Ĝ of N(w(N)) ∗⇒Ĝ w;

Proof. If N is a non-terminal in G let w(N) be one of the corresponding strings
in K, by sufficiency. Suppose we have a rule N → PQ in G; then w(N) ≡L

w(P )w(Q); which means that w(N) ∼F w(P )w(Q); which means there is a pro-
duction N(w(N)) → N(w(P ))N(w(Q)) in the set of productions of Ĝ. Similarly
for the productions N → a and the production N → λ, and thus every derivation
of a string w with respect to G, can be converted into a derivation of a string w
in Ĝ.

A consequence of this is that if we undergenerate, this can only be because we
do not have a large enough set of K; crucially, if we observe a positive counter-
example, the derivation of that string must use at least one non-terminal that
we do not have an example of in K. Therefore if we add all substrings of this
counter-example to K, we will increase the number of non-terminals we have
covered by at least 1. Therefore, if there is a grammar with n non-terminals
for the target language, we will only need at most n positive counter-examples
before we have a grammar that includes all of the target language.

6.1 Convergence Proof

We now prove that this algorithm will learn the class.

Lemma 5. Given a sub-congruential cfg in CNF, G, with non-terminals V ;
For K, let n(K) be |{N ∈ V |∃u ∈ K, N

∗⇒ u}|. Suppose (̂G) = G(K, L, F ), If w
is a positive countexample, (i.e w ∈ L(G) \ L(Ĝ)) then n(K ∪ Sub(w)) > n(K).

Proof. Let w be such an example; there must be a non-terminal that we have not
yet observed used in the derivation; call this N . Therefore there is a derivation
S

∗⇒ lNr
∗⇒ lur = w; u ∈ Sub(w), therefore n(K ∪ Sub(w)) > n(K).



Result: A cfg G
K ← Σ ∪ {λ}, K2 = K ;1

F ← {(λ, λ)};2

D = L ∩ {λ} ;3

G = 〈K, D, F 〉 ;4

while true do5

if Equiv(G) returns correct then6

return G ;7

w ← Equiv(G) ;8

if w is not in L(G) then9

K ← K ∪ Sub(w) ;1111

else12

F ← AddContexts(G,w);1414

G← MakeGrammar(K, D, F) ;15

Algorithm 5: LearnCFG

Theorem 1. There is a polynomial p, such that if L ∈ Lccfg and is generated
by a sub-congruential grammar in CNF with n non-terminals, then Algorithm 5
will terminate, returning a correct grammar, after p(n, l) steps, where l is the
maximum length of examples returned by the equivalence oracle.

Proof. First, if it terminates at all, then the result is correct. Note that we will
only add positive counterexamples at most n times. Each positive example will
add at most 1

2 l(l + 1) elements to K; and at the start K is of size 1. Therefore
|K| is always at most 1 + n

2 l(l + 1). Every time we add a feature we will split a
class of KK, and the total number of equivalence classes of KK cannot be more
than |K|2. Each time we get a negative example, we will add at least one more
feature, and so the total number of negative examples cannot be greater than
|K|2. Therefore Algorithm 5 will terminate after at most n + |K|2 iterations; by
previous lemmas the overall complexity is polynomial.

This proof is a short-cut proof – while valid it perhaps does not explain the
result fully. When we add contexts, we reduce the language, until eventually
we will only undergenerate. In particular, eventually we will have that u ∼F v
implies u ≡L v; i.e. that we have split the classes up as finely as possible until
they correspond to the actual congruence classes of the language. We can explain
this with an additional lemma, which we won’t prove:

Lemma 6. For any K and any L there is a finite set of contexts F0 such that
for all F ⊇ F0, L(G(K, L, F )) ⊆ L.

Note additionally that the algorithm is polynomial at every step – it is possi-
ble to create an algorithm that “cheats” by using an exponential amount of data
and then constructing a hypothesis with only an exponentially long counter-
example [11], in order to force l to be exponentially large, so that the overall
complexity will be polynomial. This algorithm satisfies the stricter condition



that at each step the amount of computation used is polynomially bounded in
n and l.

7 Sample run

We will now illustrate this with a sample run of the algorithm on the Dyck
language over the alphabet {a, b} where L = {λ, ab, abab, aabb, . . . }. This is an
infinite non-linear context free language.

We initialise K and F to the trivial starting points. Our observation table is
shown as Step 0 in Figure 2. This is vacuously consistent, so we create a grammar
with one non-terminal, S and the rules S → λ, and S → SS, which just generates
the language {λ}. We query this, and it undergenerates; let us suppose we receive
the positive counterexample ab. We add Sub(ab) to K, getting K = {λ, a, b, ab};
this is shown as Step 1.

Step 0 (λ, λ)

λ 1

Step 1 (λ, λ)

λ 1
a 0
b 0
ab 1

aa 0
ba 0
bb 0
abb 0
aba 0
aab 0
bab 0
abab 1

Step 2 (λ, λ) (a, λ)

λ 1 0
a 0 0
b 0 1
ab 1 0

aa 0 0
ba 0 0
bb 0 0
abb 0 1
aba 0 0
aab 0 0
bab 0 1
abab 1 0

Step 3 (λ, λ) (a, λ) (λ, b)

λ 1 0 0
a 0 0 1
b 0 1 0
ab 1 0 0

aa 0 0 0
ba 0 0 0
bb 0 0 0
abb 0 1 0
aba 0 0 1
aab 0 0 1
bab 0 1 0
abab 1 0 0

Fig. 2. States of observation table; in each case, the elements of K are above the line,
and KK \K below the line.

So this is not consistent since a ∼F b but aa is not equivalent to ab. We
add the feature (a, λ), which will separate a and b. This gives us Step 2 in the
figure; this is consistent, since the only two strings in K that are similar are λ
and ab and these are in fact congruent. So we define the grammar which has 3
non-terminals S, A,B.

This has the three lexical rules S → λ A → a and B → b. We also have these
binary rules: S → SS, S → AB A → AA A → BA and A → BB.

The set of rules expanding A are clearly bizarre; but we get them since for
example if we combine an a with an a we get aa which has the same features as
A; the problem is that a ∼F aa but clearly they are not congruent. This defines
a language which overgenerates since we have S → AB → AAB → aab. So we
then equivalence query this grammar, and get, let us suppose, the string aab.
We now call FindContext with arguments S, (λ, λ), aab; we have a derivation



S → AB from the strings ab → a, b. We test ab which is in the language, so
we then call FindContext with arguments A, (λ, b), aa. A has the set of strings
a, aa and we note that (λ, b) splits these, so we return (λ, b) and add it to F .

This is again consistent, shown as Step 3, and gives us the grammar with
lexical rules as before and binary rules:

– S → SS, S → AB
– A → AS, A → SA,
– B → BS,B → SB

This is consistent and defines the right language so we query and terminate.

8 Discussion

The mat model, though standard in grammatical inference, is unrealistic for
classes of representations where the equivalence queries are undecidable.

We decided to use this model for several reasons: the first is the ZULU
competition [12] which looks again at practical issues in the use of the lstar
algorithm.

In the context of the specific representation classes we use here, we note that
the equivalence of NTS grammars is decidable [13], and that it is polynomially
decidable whether a given cfg is NTS [14]. Therefore synthetic experiments
with this algorithm are certainly practical. We have implemented the algorithm
using a sampling approximation to the equivalence oracle and, though we do
not present any experimental results here, it is simple and efficient. More gener-
ally, one can approximate the equivalence oracle by generating examples from a
fixed distribution or from both target and hypothesis grammars, either using a
probabilistic cfg or otherwise[15].

Finally, the mat model divides representation classes along interesting lines:
DFAs are learnable and NFAs are not. Gold style identification in the limit
models tend to be either too restrictive or too permissive. mat learning, on
the other hand, seems to have the right level of difficulty: it accords well with
practical experiences in learning competitions such as the Tenjinno [16] and
Omphalos competitions [17].

de la Higuera [18] says

the question as to whether it (the class of context free grammars) can
be identified with a polynomial number of queries to a mat is still an
open question, but widely believed to be also intractable.

The work presented here provides a partial answer to this question: it seems clear
that using these approaches only a limited subclass can be learned efficiently;
however this work does seem to have overcome the barrier of “linearity” that
has been observed. There is still a form of determinism in the grammars, but
this is a bottom up determinism, rather than a left-to-right determinism.

Shirakawa and Yokomori [5] propose the following definition: A grammar G

is context-deterministic iff whenever the derivation S
∗⇒ lAr exists L(G, A) =



{w|lwr ∈ L}. This is a very interesting approach that is closely related to our
own; this requirement states that for every non-terminal any of the contexts will
uniquely pick out the language. Thus we have the same idea, albeit in a much
weaker form: we consider grammars where the sets of strings generated by non-
terminals are distributionally defined. Note that the Dyck language for example,
is not context-deterministic, since ab occurs in the context (a, b) but so does ba.

The approach here is less powerful than the lattice based approaches in [4,
19], but they are easier to understand since they are based on the classic cfg
representation. Nonetheless this paper gives a very natural “textbook” algorithm
for a reasonable class of context free languages. The class of languages definable
is the largest class we can hope to represent using the natural one non-terminal
per congruence class representation. This is also a properly polynomial result
for a class of representations that includes some languages where the smallest
strings are exponentially large. [1] shows only a characteristic set of polynomial
cardinality, which is strictly speaking too weak, since one could specify an addi-
tional very long string in the set in order to give the algorithm arbitrary amounts
of additional computational time, and [4] only gives a polynomial update time
algorithm. [9] suggests using the thickness as an additional parameter.

Comparing this result to the Binary Feature Grammar (bfg) result in [4],
one important difference is that the bfg approach uses as its representational
primitives sets of the form {w|CL(w) ⊇ CL(v)} rather than the congruence
classes here. This increases the class of languages, but means that it is more
difficult to get a polynomial m̧at result.
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