
[17:37 1/8/2013 ext037.tex] LogCom: Journal of Logic and Computation Page: 1 1–27

Language Corner

The syntactic concept lattice: Another
algebraic theory of the context-free
languages?
ALEXANDER CLARK, Department of Philosophy, King’s College London,
The Strand, London WC2R 2LS.
E-mail: alexsclark@gmail.com

Abstract
The syntactic concept lattice is a residuated lattice associated with a given formal language; it arises naturally as a generalization
of the syntactic monoid in the analysis of the distributional structure of the language. In this article we define the syntactic
concept lattice and present its basic properties, and its relationship to the universal automaton and the syntactic congruence; we
consider several different equivalent definitions, as Galois connections, as maximal factorizations and finally using universal
algebra to define it as an object that has a certain universal (terminal) property in the category of complete idempotent semirings
that recognize a given language, applying techniques from automata theory to the theory of context-free grammars (CFGs).
We conclude that grammars that are minimal, in a certain weak sense, will always have non-terminals that correspond to
elements of this lattice, and claim that the syntactic concept lattice provides a natural system of categories for representing
the denotations of CFGs.

Keywords: Context-free grammars, universal automaton, distributional learning.

1 Introduction

The theory of finite automata as representations of regular languages is now very well developed;
there are three types of canonical representations. First, the canonical minimal deterministic finite
automation (DFA), based on the Myhill–Nerode congruence; secondly, the universal automaton (UA)
[12, 27]; and finally, the canonical residual automaton [14] occupies a position between these two,
being non-deterministic but quite close to the DFA. All of these are based in some sense on the
relation between prefixes and suffixes: two strings p and s are related if their concatenation is in the
language. Formally, we might write p∼L s iff ps∈L. The Myhill–Nerode congruence says that two
prefixes are identical if they are related to exactly the same set of suffixes; this gives a partition of
the set of prefixes. On the other hand, the UA is based on the Galois connection between prefixes
and suffixes, though the standard presentations do not present it in this way. This gives, rather than
a partition, an overlapping hierarchy, a lattice, whose automata theoretic interpretation is therefore
naturally non-deterministic.

When we move to the theory of context-free languages and grammars, we need to consider rather the
relation between contexts and substrings, where a context is an ordered pair of strings or, equivalently,
a string with a gap in it. We might write this as (l,r)∼L u iff lur ∈L. In this case we have two relevant
structures: the syntactic congruence, which corresponds exactly to the Myhill–Nerode congruence,
and the recently introduced syntactic concept lattice [6, 7, 9, 10] that corresponds to the UA. This
is very closely related to the syntactic semiring [29, 30]; indeed for regular languages they are
isomorphic.1 The syntactic congruence has been classically studied (e.g. [31]) and has recently

1The syntactic semiring is a quotient of the set of finite sets of strings.

© The Author, 2013. Published by Oxford University Press. All rights reserved.
For Permissions, please email: journals.permissions@oup.com
doi:10.1093/logcom/ext037

 Journal of Logic and Computation Advance Access published August 9, 2013
 at U

niversity of Sheffield on July 7, 2014
http://logcom

.oxfordjournals.org/
D

ow
nloaded from

http://logcom.oxfordjournals.org/

[17:37 1/8/2013 ext037.tex] LogCom: Journal of Logic and Computation Page: 2 1–27

2 The syntactic concept lattice

Table 1. Relationship between congruences and lattices when
considering regular grammars (on the left) and context-free grammars

(on the right)

p∼s (l,r)∼u

Equivalence relation Myhill–Nerode relation Syntactic congruence
Lattice Universal automaton Syntactic concept lattice

given rise to a number of algorithms for the grammatical inference of context-free grammars (CFGs)
[5, 11] that are analogous to the results for regular inference using (DFAs) obtained by Angluin [1, 2].
We also note the result of Bollig et al. for learning residual automata [3]. However, whereas with
regular languages, the restriction to deterministic automata does not reduce the class of languages
that can be expressed,2 with CFGs the situation is quite different. The class of languages that can be
expressed using non-terminals that correspond to congruence classes under the syntactic congruence
is a subclass of context-free languages, which while including all the regular languages, does not
include such simple languages as the palindrome language over a two letter alphabet.

In this article we define the syntactic concept lattice, and give its basic properties, focusing on its
relationships to the syntactic congruence and the UA. We also demonstrate that it has a desirable
property analogous to that of the UA: namely that it contains a morphic image of every CFG for
the language. Alternatively, we show that it is the unique (up to isomorphism) smallest structure that
interprets a CFG for the language; in other words it is the smallest and simplest object that provides a
semantics for the grammar. We can view it as the syntactic monoid lifted from monoids (semigroups
with unit) to semirings; as lifting from strings to sets of strings. Table 1 shows the relationship
between these structures.

In Section 2 we will define our notation, and define the basic algebraic structures we use: monoids,
and complete idempotent semirings (CISs), as well as the basic notions of CFGs. Then, in Section 3
we define the syntactic concept lattice, and explain its basic properties. We then, in Section 4 start to
develop an algebraic theory for the semantics of CFGs, algebraic structures that we use to interpret
them. We then define the basic ideas of syntactic morphisms—i.e. morphisms of CFGs in Section 5,
which leads us onto the universal morphism using the Syntactic Concept Lattice (Section 6).

We then look briefly at the theory of regular languages in Section 7, discussing the UA and its
relationship(s) to the Syntactic Concept Lattice. We then conclude with some discussion of the
relevance of this work for representational assumptions in linguistics.

2 Preliminaries

We use standard set theoretic notation; the empty set is ∅, and ⊆, ⊇, ∪ and ∩ have their normal
meanings. We write P(X) for the power set of X, and F(X) for the collection of only finite subsets
of X.

We have a finite non-empty set � which we call an alphabet. Let �∗ be the set of all finite length
strings over �. We write λ for the empty string. We will use letters at the beginning of the alphabet,

2It is worth recalling here that the size of the minimal DFA for a given language may be exponentially larger than the
size of the minimal non-deterministic automaton (NFA) for the same language, so the two representations are not entirely
equivalent.

 at U
niversity of Sheffield on July 7, 2014

http://logcom
.oxfordjournals.org/

D
ow

nloaded from

http://logcom.oxfordjournals.org/

[17:37 1/8/2013 ext037.tex] LogCom: Journal of Logic and Computation Page: 3 1–27

The syntactic concept lattice 3

a,b,c to refer to elements of � and also abusing notation slightly to strings of length 1. We write |u|
for the length of a string u∈�∗; so |λ|=0. We will write |u|a for the number of times the element
a∈� occurs in the string u. We will write concatenation of strings u,v as uv and sometimes u ·v when
we want to be explicit.

A language is any subset of�∗. For two such sets A,B we define the product AB={uv |u∈A,v∈B}.
A context is an ordered pair of strings (l,r)∈�∗×�∗. We can combine a context (l,r) and a string
u using the wrapping operation which we write (l,r)
u= lur. (λ,λ) is the empty context; clearly
(λ,λ)
u=u for any u. We will lift these operations to sets in the standard way. If C is a set of
contexts, and S is a set of strings, then C
S ={lur | (l,r)∈C,u∈S}. If X,Y are sets of strings then
X ×Y is the set of contexts {(x,y) |x∈X,y∈Y}. We also extend the wrap operation
 to contexts as
(x,y)
(p,q)= (xp,qy), so that (x,y)
(p,q)
u is associative, and to sets of contexts in the natural
way.

2.1 Monoids

We use a few standard algebraic structures; in order to make this self-contained we define all the
basic properties here; we will sometimes be rather casual about the difference between an algebraic
structure, and its reducts and expansions.

A monoid is a set M together with a unit, 1M and an associative operation ◦M . A monoid
morphism from 〈M,1M ,◦M〉 to 〈N,1N ,◦N 〉 is a function h :M →N such that h(a◦M b)=h(a)◦N h(b)
and h(1M)=1N . Then, note that 〈�∗,λ,·〉 is a monoid, the free monoid over �; the operation is
simply concatenation.

We write M1 for the trivial one element monoid.

2.2 Semirings

Rather than just a monoid (a semigroup with unit) we will consider a slightly more complicated
structure which in addition to the concatenation operation ◦ has another operation which we will
write as ∨.

Definition 2.1
An idempotent semiring is a structure which we write as 〈M,∨,◦,⊥,1〉, where

• 〈M,∨,⊥〉 is a commutative idempotent monoid with ⊥ as unit; i.e. x∨⊥=x=⊥∨x.
Idempotent means that x∨x=x.

• 〈M,◦,1〉 is a monoid.
• ⊥◦x=x◦⊥=⊥.
• ◦ distributes over ∨, so a◦(b∨c)= (a◦b)∨(a◦c) and (b∨c)◦a= (b◦a)∨(c◦a).

The free idempotent semiring over � is the collection of finite sets of strings of �, F(�∗), where
1={λ}, ⊥=∅, ∨=∪ and X ◦Y =XY is concatenation extended to sets of strings.

We need to add some infinitary operations here—in particular we want to be able to take the ∨
(the union, intuitively) over infinite sets. This structure is then a CIS [15, 16, 20].

Definition 2.2
A complete idempotent semiring (CIS) is an idempotent semiring 〈M,∨,◦,⊥,1〉, where additionally

• ∨ is defined over arbitrary sets. Given a family of sets {xi | i∈ I}, there is an element
∨

i∈I xi.

 at U
niversity of Sheffield on July 7, 2014

http://logcom
.oxfordjournals.org/

D
ow

nloaded from

http://logcom.oxfordjournals.org/

[17:37 1/8/2013 ext037.tex] LogCom: Journal of Logic and Computation Page: 4 1–27

4 The syntactic concept lattice

• ◦ distributes over ∨: if X is a collection of elements then a◦(
∨

i∈I xi)=∨i∈I a◦xi and (
∨

i∈I xi)◦
a=∨i∈I (xi ◦a).

The free structure generated by this over � is P(�∗).
The elements of this are finite or infinite sets of finite length strings over �. If we had just an

idempotent semiring, the free structure would be the collection of finite sets of strings—since the
languages we use might be infinite, we need to allow infinite sets and therefore a complete semiring.

These CIS have a natural partial order.

Proposition 2.3
Given a CIS, we can define a relation ≤ by X ≤Y iff Y =X ∨Y . This relation is a partial order.

Complete idempotent semirings are the appropriate structures for interpreting CFGs as systems of
equations [19, 25].3

Note that a CIS is an ω-complete partial order. Every infinite ascending chain a1,a2,..., where
ai ≤ai+1, has a least upper bound, which is equal to

∨
i ai.

2.3 Residuated lattices

Definition 2.4
A complete lattice is a structure 〈S,≤〉, where every subset A of S has a greatest lower bound and
least upper bound denoted by

∧
A and

∨
A. In such a lattice we can define binary operations ∨,∧ on

S by x∨y=∨{x,y} and x∧y=∧{x,y}, and top element �=∨S, and bottom element ⊥=∧S.

Definition 2.5 [17]
A complete residuated lattice is a complete lattice 〈S,≤〉, with three additionally binary operations
◦,/,\ and a unit 1, where 〈S,1,◦〉 is a monoid and the three binary operations satisfy the identities,
for all X,Y ,Z ∈S.

Y ≤X\Z iff X ◦Y ≤Z iff X ≤Z/Y

Proposition 2.6 [23]
Any complete idempotent semiring can be expanded to a complete residuated lattice by defining

X ∧Y =
∨

{Z |Z<X,Z<Y}
X/Y =

∨
{Z |Z ◦Y ≤X}

X\Y =
∨

{Z |X ◦Z ≤Y}.

2.4 Congruences

A congruence on an algebra is an equivalence relation on the elements that respects the operations of
the algebra. A congruence of a monoid then is an equivalence relation ∼= such that if u∼=u and v∼=v′
then u◦v∼=u′ ◦v. We write [u]∼= for the equivalence class of u.

The equivalence classes under a congruence form an algebra where [1]∼= is a unit, and the
concatenation operation is [u]∼=◦[v]∼= =[uv]∼=. This is well defined since it is a congruence.

3I am grateful to Hans Leiss for making this point.

 at U
niversity of Sheffield on July 7, 2014

http://logcom
.oxfordjournals.org/

D
ow

nloaded from

http://logcom.oxfordjournals.org/

[17:37 1/8/2013 ext037.tex] LogCom: Journal of Logic and Computation Page: 5 1–27

The syntactic concept lattice 5

A homomorphism is analogously a function between algebras which respects the operations.
The congruences and the surjective homomorphisms are closely related. Given a surjective
homomorphism h from A→B, the equivalence relation on A given by u∼=v iff h(u)=h(v) is
a congruence. Conversely, given a congruence ∼=, the natural map h :u→[u]∼= is a surjective
homomorphism.

Given a free algebra, like the free monoid �∗, the congruences form a lattice; and therefore also
do the corresponding quotient monoids. The bottom element is �∗, the finest congruence, and the
top is the coarsest congruence where everything is equivalent to everything else and there is only
one element in the quotient. For any surjective homomorphism from �∗ onto a monoid A, we can
identify a congruence which is an element of this lattice. Similarly if we have two congruences, one
of which is finer than the other, then there is a surjective homomorphism from the finer to the coarser.

The same applies, as we shall see, for congruences and homomorphisms of CIS.

2.5 The syntactic congruence

The syntactic concept lattice, which is the main topic of this article, is best understood in relation to the
syntactic congruence [15]; therefore, we recall the elementary properties of the syntactic congruence
in a notation consistent with the rest of this article.

Definition 2.7
For a language L and w∈�∗; define the distribution of w to be

CL(w)={(l,r)∈�∗×�∗ | lwr ∈L}.

Definition 2.8
We say that two strings u,v∈�∗ are congruent w.r.t. a language L, written u≡L v iff CL(u)=CL(v).

Proposition 2.9
≡L is an equivalence relation and a congruence of the monoid �∗; i.e. u≡L v implies that for any
z∈�∗, uz≡L vz and zu≡L zv.

Definition 2.10
We write [u]L for the equivalence class of u under ≡L .

[u]L ={v∈�∗ |u≡L v}

Proposition 2.11
For any language L and any strings, u,v

[uv]L ⊇[u]L[v]L.

The following proposition is classical, attributed to Myhill [31].

Proposition 2.12
The number of congruence classes of L is finite iff L is regular.

Example 2.13
Suppose L=�∗. Then there is one congruence class which consists of all strings.

 at U
niversity of Sheffield on July 7, 2014

http://logcom
.oxfordjournals.org/

D
ow

nloaded from

http://logcom.oxfordjournals.org/

[17:37 1/8/2013 ext037.tex] LogCom: Journal of Logic and Computation Page: 6 1–27

6 The syntactic concept lattice

Example 2.14
Consider the regular language L= (ab)∗. This has the following 6 congruence classes which are all
regular sets. (ab)+, {λ}, a(ba)∗, b(ab)∗, (ba)+, and finally all other strings (i.e. not in the preceding
5 classes) which we can express using the regular expression: �∗bb�∗∪�∗aa�∗.

Example 2.15
Consider the language O1 ={w∈{a,b}∗ | |w|a =|w|b}. Define c(w)=|w|a −|w|b. Clearly [u]L =
{v|c(u)=c(v)}, and so this has an infinite number of congruence classes indexed by the integers
where for n∈Z, Cn ={w |c(w)=n}.
Definition 2.16
A congruence ∼ saturates a language L if x∼y implies that x∈L iff y∈L.

Informally, this just means that all of the classes are either inside or outside the language.

Proposition 2.17
The syntactic congruence saturates L, and is the coarsest congruence that saturates L.

Proof. Suppose ∼ is a congruence that saturates L. and suppose x∼y. Take some l,r. Then lxr ∼ lyr
as it is a congruence. Since ∼ saturates L then lxr ∈L iff lyr ∈L. Therefore x≡L y and so ∼ is finer
than ≡L . �
Definition 2.18
Given a monoid M and a morphism h from�∗ to M, we say that the monoid recognizes the language
L through h if there is a set X ⊆M such that h−1(X)=L, i.e. such that

{w∈�∗ |h(w)∈X}=L.

Note that if M recognizes L through the morphism h, then h(M) also recognizes L through the
surjective morphism h. h(M) is a submonoid of M if h is a homomorphism. In this case we are not
interested in all of M but only in the submonoid h(M). The rest of M consists of elements that are
not related to the language at all. We will therefore restrict our consideration to the case where h is
surjective.

Definition 2.19
The syntactic monoid, �∗/≡L is a monoid whose elements are the congruence classes of �∗ under
≡L , concatenation being defined as [uv]=[u]◦[v], with left and right identity [λ].

Note that the operation in the quotient is well-defined, as usual, by the fact that it is a congruence.

Example 2.20
Consider again the language O1. This has a syntactic monoid which is isomorphic to the integers
under addition.

The syntactic monoid has a certain universal property [32].

Definition 2.21
The natural map from �∗ →�∗/≡L , written ηL , is u→[u]L . This is a surjective monoid
homomorphism.

 at U
niversity of Sheffield on July 7, 2014

http://logcom
.oxfordjournals.org/

D
ow

nloaded from

http://logcom.oxfordjournals.org/

[17:37 1/8/2013 ext037.tex] LogCom: Journal of Logic and Computation Page: 7 1–27

The syntactic concept lattice 7

Σ∗ M1Σ∗/ ≡L

M

ηL

hLh

Figure 1. The syntactic congruence: the coarsest congruence that recognizes L. Fine congruences
are on the left and on the far right is the coarsest congruence of all with only one congruence class;
the quotient monoid is the trivial one element monoid M1. Congruences that recognize L are shaded
green. Congruences that do not are shaded red. If M is a monoid that recognizes L through the
morphism h then there is a homomorphism from M to �∗/≡L , hL such that ηL =h ·hL .

Proposition 2.22
The syntactic monoid of L recognizes L through the morphism ηL .

Proof. This is perhaps too obvious to merit a detailed proof; but if u∈L and u≡L v then v is in L;
so clearly L=⋃{[u]L |u∈L}. �

The syntactic monoid of L is the smallest (coarsest) monoid that recognizes L, and it is unique up
to isomorphism.

We use the · symbol to represent function composition here.4 If f :A→B and g :B→C then
f ·g :A→C.

Proposition 2.23
Suppose L is recognized by the monoid M via the surjective morphism h then there is a morphism
hL from M to the syntactic monoid such that ηL =h ·hL .

See the diagram in Figure 1 for an illustration of this.

Proof. Define the congruence ≡h to be u≡h v iff h(u)=h(v). This is a congruence that saturates L.
Define hL to be hL(h(x))=ηL(x). Since ≡h saturates L, this is well-defined. Suppose x and y are such
that h(x)=h(y); then x≡h y which implies x≡L y which implies ηL(x)=ηL(y). �

Note that all of this follows quite directly from basic principles of universal algebra: this is
an immediate consequence of Noether’s third isomorphism theorem, namely that if we have two
congruences of an algebra such that one is finer than the other, then there is a homomorphism from
the quotient of the finer to the quotient of the coarser. We do not rely on this body of mathematics in
this article but prove things directly each time. This leads to a little repetition and a lack of maximal
generality, but makes the presentation more self-contained, concrete and comprehensible.

4We do this to avoid confusion with the more standard symbol ◦ which here we use merely as concatenation in monoids.

 at U
niversity of Sheffield on July 7, 2014

http://logcom
.oxfordjournals.org/

D
ow

nloaded from

http://logcom.oxfordjournals.org/

[17:37 1/8/2013 ext037.tex] LogCom: Journal of Logic and Computation Page: 8 1–27

8 The syntactic concept lattice

2.6 Context-free grammars

A CFG over an alphabet� is a tuple 〈�,V ,S,P〉, where V is a finite set of non-terminals, S ∈V is the
unique start symbol, P is a finite set of productions written N →α, where N ∈V and α∈ (V ∪�)∗. We
define the derivations in the standard way: we define the one-step derivation relation by βNγ ⇒βαγ ,
when N →α∈P and β,γ ∈ (V ∪�)∗. We use the notation α

∗⇒β for a derivation using zero or more
steps : the reflexive transitive closure of ⇒.

Definition 2.24
For a CFG, and a non-terminal N we define L(G,N)={w∈�∗ |S

∗⇒w} and C(G,N)={(l,r)∈�∗×
�∗ |S

∗⇒ lNr}. We also extend L(G,α) forα∈ (V ∪�)∗ in the usual way, with L(G,λ)={λ}, L(G,a)=
{a} for a∈� and L(G,αβ)=L(G,α)L(G,β).

Note that by this definition (λ,λ)∈C(G,S) since S
∗⇒S =λSλ, even if S does not occur on the

right-hand side of any production in G.
L(G) is defined to be L(G,S), for the unique start symbol S. A context-free language is a language

L∗ such that there is a CFG G such that L(G)=L∗.

Proposition 2.25
If we have a grammar G that defines a language L then for any non-terminal N in G,

C(G,N)
L(G,N)⊆L.

We will give the trivial proof now.

Proof. If (l,r)∈C(G,N), then there is a derivation S
∗⇒ lNr. If u∈L(G,N), then there is a derivation

N
∗⇒u. There is therefore a derivation S

∗⇒ lNr
∗⇒ lur, and so (l,r)
u= lur ∈L. �

This proposition implies that a non-terminal in a CFG defines a decomposition or factorization of
L into a set of contexts and a set of substrings.

Proposition 2.26
If there is a production N →α, then L(G,N)⊇L(G,α).

Proposition 2.27
More specifically, if the rule is of the form N →PQ then L(G,N)⊇L(G,P)L(G,Q). If the rule is of
the form N →w then L(G,N)⊇{w}.

Therefore we have two relations between the grammar and the language it describes. One is that
the non-terminal determines a factorization into a set of contexts and a set of strings. The other is
that a production determines an inclusion relation between the sets of strings that correspond to non-
terminals. As we shall see later—and in exact analogy to the UA (see, e.g. [27])—we can reverse this
process and define a grammar where the non-terminals are based on these decompositions—more
precisely on the maximal decompositions, and the productions are the ones that satisfy the inclusion
relations.

In what follows we will occasionally restrict ourselves to grammars where the productions are
either of the form N →PQ or N →a for a∈�, or N →λ; a restriction along the lines of Chomsky
normal form.

 at U
niversity of Sheffield on July 7, 2014

http://logcom
.oxfordjournals.org/

D
ow

nloaded from

http://logcom.oxfordjournals.org/

[17:37 1/8/2013 ext037.tex] LogCom: Journal of Logic and Computation Page: 9 1–27

The syntactic concept lattice 9

3 The syntactic concept lattice

Given any fixed language L, we can define an object called the syntactic concept lattice [6, 9]. This
is a canonical object in the sense that it is uniquely defined for each language.

There are several equivalent ways of defining this lattice; we will describe two. The first is based
on the Galois connection between sets of contexts and sets of strings [13]; this is exactly the same
as Formal Concept Analysis [18]. We consider some fixed language L in what follows. We define a
polar map from sets of strings to sets of contexts. For a set of strings S, we define a set of contexts
S� as follows:

S� ={(l,r)∈�∗×�∗ |∀u∈S,lur ∈L}. (1)

This is the shared distribution of the set of strings S. Dually, we define a polar map from a set of
contexts C to the set of all strings that can occur in all of these contexts.

C� ={u∈�∗ |∀(l,r)∈C,lur ∈L} (2)

We now give some basic properties of these maps.

Proposition 3.1
If S ⊆T are two sets of strings, then S� ⊇T�. If S is empty, then S� =�∗×�∗.

Proposition 3.2
If X,Y are sets of strings then (X ∪Y)� =X�∩Y�. Similarly if Xi, for i∈ I is a family of sets, finite or
infinite, then (⋃

i∈I

Xi

)�
=
⋂
i∈I

X�
i .

Dually we have the following two propositions.

Proposition 3.3
If C ⊆D are two sets of contexts, then C� ⊇D�.

Proposition 3.4
If C,D are sets of contexts then (C∪D)� =C�∩D�. Similarly if Ci, for i∈ I is a family of contexts,
finite or infinite, then (⋃

i∈I

Ci

)�
=
⋂
i∈I

C�
i .

Proposition 3.5
For any set of strings S, S ⊆S��. For any set of contexts C, C ⊆C��.

Proof. Suppose w∈S. Then the set of contexts that w can occur in contains S�. Therefore w∈S��.
Similarly if (l,r)∈C, the set of strings that can occur in (l,r) is a superset of C� and so (l,r)∈C��.

�
Proposition 3.6
For any set of strings S, S� =S���.
For any set of contexts C, C� =C���.

Proof. (S�)�� ⊇S� by the previous lemma (putting C =S�). But S�� ⊇S, so (S��)� ⊆S� by
Proposition 3.1. This completes the first proof; the second is exactly parallel. �

 at U
niversity of Sheffield on July 7, 2014

http://logcom
.oxfordjournals.org/

D
ow

nloaded from

http://logcom.oxfordjournals.org/

[17:37 1/8/2013 ext037.tex] LogCom: Journal of Logic and Computation Page: 10 1–27

10 The syntactic concept lattice

Definition 3.7
We say that a set of strings S is closed iff S =S��. Similarly, we say that a set of contexts C is closed
iff C =C��.

Proposition 3.8
For any set of strings S, S� is closed, and so is S��. For any set of contexts C, C� is closed, and so is
C��.

Proposition 3.9
L is always a closed set of strings.

(λ,λ)∈L�. Therefore if w∈L��, w must occur in the context (λ,λ) which implies that w∈L.

Proposition 3.10
Suppose X and Y are sets of strings; then (X ∪Y)�� = (X��∪Y��)��. More generally, if Xi is a family
of sets of strings, then

⋃
i X

��
i = (

⋃
i X

��
i)��.

Proof. (X��∪Y��)� =X���∩Y��� =X�∩Y� = (X ∪Y)�. Similarly (
⋃

i X
��
i)� =⋂i X

���
i =⋂i X

�
i =

(
⋃

i Xi)�. �
Definition 3.11
A concept is an ordered pair 〈S,C〉 of a set of strings S and a set of contexts C such that S� =C and
C� =S.

Though it seems like these concepts might be hard to find, it is easy to prove the following
proposition.

Proposition 3.12
• For any set of strings S, 〈S��,S�〉 is a concept.
• For any set of contexts C, 〈C�,C��〉 is a concept.
• For any set of strings S we define C(S) to be the concept 〈S��,S�〉.

Indeed it is easy to see that if 〈S,C〉 is a concept, then S is a closed set of strings and C is a closed
set of concepts. There is a bijection between the set of closed sets of strings and the set of closed sets
of concepts; we can either consider the concepts as sets of strings, or sets of contexts, or both.

An alternative way of defining the concepts is as maximal decompositions of a language into sets
of strings and contexts.

Definition 3.13
A concept is an ordered pair 〈S,C〉 of a set of strings S and a set of contexts C such that C
S ⊆L
and S and C are both maximal. That is to say, if 〈T ,D〉 is such that D
T ⊆L and T ⊇S,D⊇C then
T =S and C =D.

It is easy to verify that these two definitions are equivalent; this second definition makes the links
with the UA more explicit.

Example 3.14
Suppose L=�∗. Then there is exactly one concept: 〈�∗,�∗×�∗〉.
Example 3.15
Suppose L=∅. Then there are exactly two concepts: 〈�∗,∅〉 and 〈∅,�∗×�∗〉.

 at U
niversity of Sheffield on July 7, 2014

http://logcom
.oxfordjournals.org/

D
ow

nloaded from

http://logcom.oxfordjournals.org/

[17:37 1/8/2013 ext037.tex] LogCom: Journal of Logic and Computation Page: 11 1–27

The syntactic concept lattice 11

Definition 3.16
Given a language L, we denote the set of concepts of L, by B(L). We call this the syntactic concept
lattice of L.

As we shall see this forms a very rich algebraic structure.

Definition 3.17
We define a partial order by 〈S,C〉≤〈T ,D〉 iff S ⊆T .

Definition 3.18
Suppose {〈Si,Ci〉 | i∈ I} is a collection of concepts. We define

∨{〈Si,Ci〉 | i∈ I}=C(
⋃

i Si). For two
concepts, we define 〈Sx,Cx〉∨〈Sy,Cy〉=C(Sx ∪Sy).

It is clear that this is a least upper bound. We use the notation B(L) to emphasize the link to formal
concept analysis where the fraktur B stands for Begriff. We now examine the relationship between
the syntactic congruence and the syntactic concept lattice.

Proposition 3.19
{u}�� ={v}�� iff u≡L v.

Proposition 3.20
[u]⊆{u}��.

Proposition 3.21
If w∈S for some closed set of words S, then [w]⊆S. In other words, closed sets of strings are unions
of congruence classes: S =⋃w∈S[w].
Proposition 3.22
B(L) has finitely many elements iff L is regular.

Proof. Note that a language L has finitely many congruence classes iff it is regular. By
Proposition 3.19 this means that if L is not regular then B(L) is infinite. By Proposition 3.21, if
L is regular, then B(L) is finite. �

Figure 2 contains a diagram which shows the syntactic concept lattice of the regular language
(ab)∗. This consists of 7 concepts, which we arrange in a Hasse diagram according to the natural
partial order.

Figure 3 contains a similar diagram for a non-regular language, which of course has an infinite
number of concepts.

Whereas the syntactic monoid is always countable; and infinite iff the language is regular, the lattice
may have uncountably many elements, even for a context-free language; of course the cardinality of
the sets can be at most 2ℵ0 , if � is finite.

Proposition 3.23
There is a context-free language L such that B(L) has uncountably many elements. (Ryo Yoshinaka,
p.c.)

Proof. Let Oc
1 ={w∈{a,b}∗ | |w|a �= |w|b}. Here |w|a means the number of occurrences in the string

w of the symbol a. Define c(w)=|w|a −|w|b, and c(l,r)=−c(lr). We can see that u≡L v iff c(u)=c(v).
For each X ⊆Z, define the concept C(X)=〈{w |c(w)∈X},{(l,r) |c(l,r) �∈X}〉. It is easy to verify that
these are concepts, and therefore B(L) is in bijection with 2Z. �

 at U
niversity of Sheffield on July 7, 2014

http://logcom
.oxfordjournals.org/

D
ow

nloaded from

http://logcom.oxfordjournals.org/

[17:37 1/8/2013 ext037.tex] LogCom: Journal of Logic and Computation Page: 12 1–27

12 The syntactic concept lattice

Figure 2. The syntactic concept lattice of the regular language (ab)∗.

Figure 3. A fragment of the syntactic concept lattice of the context-free language {anbn |n≥0}. The
lattice is finite so we just show the components generated by the short strings. The remainder of the
lattice is structurally similar to the fragment shown here and contains concept containing strings like
an,bn and so on, where n>2.

Note that in this example, the syntactic monoid of Oc
1 is isomorphic to Z under addition.5

3.1 Concatenation

We now define the natural concatenation operation and its associated residuals.

5Note that this implies the existence of an interesting language class: the class of languages with a countable concept
lattice.

 at U
niversity of Sheffield on July 7, 2014

http://logcom
.oxfordjournals.org/

D
ow

nloaded from

http://logcom.oxfordjournals.org/

[17:37 1/8/2013 ext037.tex] LogCom: Journal of Logic and Computation Page: 13 1–27

The syntactic concept lattice 13

Definition 3.24
For two closed sets of strings R,T define R◦T = (RT)��. For two concepts, 〈SR,CR〉◦〈ST ,CT 〉=
〈(SRST)��,(SRST)�〉=C(SRST).

Definition 3.25
Given a language L, we define the unit in the lattice to be λL =〈{λ}��,{λ}�〉.

The closure operation interacts nicely with the concatenation operation. Just as distributional
equivalence (≡L) is a congruence of the monoid, implying that [uv]⊇[u][v], so we have a related
result for the lattice operations, lifted to sets of strings. Indeed as we shall see later, this defines a
congruence on sets of strings—a congruence on P(�∗).

Proposition 3.26
Suppose we have two sets of strings Y ,Z . Then,

(YZ)�� ⊇Y��Z��.

Proof. [17, 25] Suppose y∈Y�� and z∈Z��. So {y}� ⊇Y� and {z}� ⊇Z�. Take (l,r)∈ (YZ)�.
So lYZr ⊆L. This means that (l,Zr)⊆Y�. So (l,Zr)⊆Y� ⊆{y}�. So lyZr ⊆L. This means that
(ly,r)⊆Z� ⊆{z}�. so lyzr ∈L. So (l,r)∈ (yz)� and so (l,r)∈ (Y��Z��)�. Therefore (YZ)� ⊆ (Y��Z��)�.
Therefore (YZ)�� ⊇ (Y��Z��)�� ⊇Y��Z��. �

If Y ={u} and Z ={v} then this means that {uv}�� ⊇{u}��{v}��; contrast this with the result in
Proposition 2.11.

Proposition 3.27
Suppose we have sets of strings X,Y ,Z such that X ⊇YZ . Then X�� ⊇Y��Z��.

Proposition 3.28
For any sets of strings X,Y , (XY)�� = (X��Y��)��.

Proof. By Proposition 3.26, XY�� ⊇X��Y��. So XY�� = (XY��)�� ⊇ (X��Y��)��. But XY ⊆
X��Y��, so XY�� ⊆ (X��Y��)��. �
Proposition 3.29
〈B(L),◦,λL〉 is a monoid.

Proof. We can verify that the operation ◦ is associative easily using the previous lemmas. Given
three closed sets of strings X,Y ,Z , we can see that

((XY)��Z)�� = (XYZ)�� = (X(YZ)��)��.

Similarly since X =X{λ},
X�� = (X{λ}��)�� = ({λ}��X)��,

which establishes that λL is the identity. �
Proposition 3.30
B(L) is a complete idempotent semiring.

Proof. We define the bottom element as ⊥=C(∅); ◦ and ∨ are defined as before. In order to verify
that it is a CIS, we need to check the axioms. By Proposition 3.29, we have the relevant monoid
structure. By the definition of ∨ it is associative, commutative and idempotent. If X is closed then

 at U
niversity of Sheffield on July 7, 2014

http://logcom
.oxfordjournals.org/

D
ow

nloaded from

http://logcom.oxfordjournals.org/

[17:37 1/8/2013 ext037.tex] LogCom: Journal of Logic and Computation Page: 14 1–27

14 The syntactic concept lattice

by Proposition 3.10, X = (X ∪∅��)�� so ⊥ is a unit with respect to ∨. The only remaining point to
check that X ◦∨i Yi =∨i(X ◦Yi). Suppose R,Si are closed sets of strings; then R(

⋃
i Si)=⋃i RSi.

(R(
⋃

i Si)��))�� = (R(
⋃

i Si))�� = (
⋃

i RSi)�� = (
⋃

i(RSi)��)��.
�

Proposition 3.31
By Proposition 2.6, B(L) is a residuated lattice.

We can now give a complete definition of all of the operations in this residuated lattice using only
closed sets of strings.

Definition 3.32 [25]
The structure consisting of {X ⊆�∗ |X =X��}. with constants ⊥=∅��,�=�∗,1=λ�� and partial
order X ≤Y iff X ⊆Y , operations X ∨Y = (X ∪Y)��, X ∧Y =X ∩Y , and X ◦Y = (XY)��, X/Y ={z |
zY ⊆X}, X\Y ={z |Xz⊆Y} is a residuated lattice.

In what follows we will largely take the concepts to be just closed sets of strings, implicitly using
the mapping 〈S,C〉→S where appropriate.

4 Universal property

Some rhetoric first—we want a system of syntactic categories to interpret our grammars [19]. We
have at a minimum two operations—concatenation and union—if we restrict ourselves to CFGs. One
such system might be P(�∗), but that is in a sense too complex. For each language, we want the
simplest such system: an algebraic structure that contains enough categories to represent the non-
terminals but no more. In this section, we will show that for any language there is a single simplest
system of categories, unique up to isomorphism, which is as we shall see the syntactic concept lattice;
we provide a formal statement of this in Proposition 6.4.

Definition 4.1
Given a CIS, S, we say that an equivalence relation ≡ on the elements of S is a CIS-congruence if
for all X,Y ,Z ∈S:

– X ≡Y implies X ◦Z ≡Y ◦Z and Z ◦X ≡Z ◦Y .
– X ≡Y implies X ∨Z ≡Y ∨Z .
– For any collection of sets Xi,Yi such that Xi ≡Yi,

∨
i Xi ≡∨i Yi.

Definition 4.2
Given two CIS, A and B a function h :A→B is a CIS-morphism iff

– h(x∨y)=h(x)∨h(y).
– For any collection xi, h(

∨
i xi)=∨i h(xi).

– h(x◦y)=h(x)◦h(y).

Proposition 4.3
If h is a surjective CIS-morphism from A to B, then h(1A)=1B and h(⊥A)=⊥B.

Proof. h(a)=h(1A ◦a)=h(1A)◦h(a) and h(a)=h(a◦1A)=h(a)◦h(1A). So 1B =h(1A)◦1B =h(1A).
h(a)=h(a∨⊥A)=h(a)∨h(⊥A). So h(⊥A)=h(⊥A)∨⊥B =⊥B. �
Proposition 4.4
Suppose x≤y; then h(x)≤h(y).

 at U
niversity of Sheffield on July 7, 2014

http://logcom
.oxfordjournals.org/

D
ow

nloaded from

http://logcom.oxfordjournals.org/

[17:37 1/8/2013 ext037.tex] LogCom: Journal of Logic and Computation Page: 15 1–27

The syntactic concept lattice 15

Proof. Note that x≤y iff x=x∨y. If this is true then h(x)=h(x∨y)=h(x)∨h(y) implies h(x)≤h(y).
�

We now define the residual map; informally this is a map which is analogous to the inverse.

Definition 4.5
If we have a CIS-morphism h, from CIS A to B, we define h∗ to be the map from B to A defined as
h∗(y)=∨{x∈A :h(x)≤y}.

Now h and h∗ form what is called a residuated pair.

Proposition 4.6
For all x∈A,y∈B, h(x)≤y iff x≤h∗(y).

Proof. Suppose h(x)≤y. h∗(y)=∨z∈A:h(z)≤y z. But since h(x)≤y this means that one of these
z will be x, so h∗(y)≥x. Conversely suppose x≤h∗(y); then h(x)≤h(h∗(y))=h(

∨
z∈A:h(z)≤y z)

=∨z∈A:h(z)≤y h(z)≤y. Therefore h(x)≤y. �
Proposition 4.7
h(h∗(y))≤y and h∗(h(x))≥x.

Proof. h∗(y)≤h∗(y) so h(h∗(y))≤y. h(x)≤h(x) so x≤h∗(h(y)). �
Proposition 4.8
Both h and h∗ are monotonic.

Note that if A is P(�∗) then the homomorphism is uniquely defined just by the values of the
elements of �; once we know what h({a}) is for each element a∈� then this fixes the value for
every string and thus every set of strings. This is rather like the way a linear map (a homomorphism
of vector spaces) is fixed by the value of the function at the elements of a basis.

We are concerned exclusively with homomorphisms that arise from congruences of P(�∗) and
are therefore all surjective. In this case we can slightly strengthen the results.

Proposition 4.9
If h is a surjective CIS-homomorphism then h(h∗(y))=y.

Proof. By definition h∗(y)=∨{x∈A :h(x)≤y}. Consider {x∈A :h(x)=y}. Since h is surjective, this
is non-empty. Therefore

∨{x∈A :h(x)≤y}=∨{x∈A :h(x)=y} by monotonicity of h. So h(h∗(y))=
h(
∨{x∈A :h(x)=y})=∨{y}=y. �

Proposition 4.10
If h :A→B is a surjective CIS-homomorphism then for any X,Y ∈B, h∗(X ◦Y)≥h∗(X)◦h∗(Y).

Proof. Consider h(h∗(X)◦h∗(Y))=h(h∗(X))◦h(h∗(Y))=X ◦Y . So h∗(X)◦h∗(Y)∈{z∈A |h(z)≤X ◦
Y}. Now h∗(X ◦Y)=∨{z∈A |h(z)≤X ◦Y}≥h∗(X)◦h∗(Y). �

We now define the idea of a CIS recognizing a language which differs in some respects to the
earlier definition of a monoid recognizing a language.

Definition 4.11
We say that a CIS B recognizes L through the morphism h if h is a surjective morphism from
P(�∗)→B such that h∗(h(L))=L.

Example 4.12
P(�∗) recognizes L through the identity morphism.

 at U
niversity of Sheffield on July 7, 2014

http://logcom
.oxfordjournals.org/

D
ow

nloaded from

http://logcom.oxfordjournals.org/

[17:37 1/8/2013 ext037.tex] LogCom: Journal of Logic and Computation Page: 16 1–27

16 The syntactic concept lattice

Recall that this morphism is fixed just by the elements of h(a) for a∈�. So if we have a morphism
from P(�∗)→B then h(L) is the unique element that might represent L. Therefore, h∗(h(L))≥L
by the previous proposition. The condition thus just states that this element does in fact correspond
to L and not some other larger set of strings. For example if B is the single element CIS, then
h∗(h(L))=�∗.

Having established these general properties of CIS-morphisms, and congruences we can now
consider the specific examples we are interested in.

Definition 4.13 [34]
Given a language L we define an equivalence relation on sets of strings, i.e. on P(�∗), where the set
of strings X is congruent to the set of strings Y , written X ∼=L Y iff X� =Y�.

This congruence is on sets of strings—the syntactic congruence is a congruence of strings. They
coincide on singleton sets of strings.

Proposition 4.14
The relation ∼=L is a CIS-congruence.

Proof. For all sets of strings X,Y ,W ,Z .

• If X� =Y� and W� =Z� then by Proposition 3.28, XW�� = (X��W��)�� = (Y��Z��)�� =YZ��.
So (XW)� = (YZ)�.

• If X� =Y� and W� =Z� then (X ∪W)� =X�∩W� =Y�∩Z� = (Y ∪Z)�. (or by Proposi-
tion 3.10).

• Suppose Xi,Yi are families of sets of strings indexed by I such that Xi ∼=L Yi for all i∈ I . Then
(
∨

i Xi)� =⋂i X
�
i =⋂i Y

�
i = (

∨
i Yi)�.

�
Proposition 4.15
For any language L, B(L) is CIS-isomorphic to P(�∗)/∼=L .

Proof. We define the natural functionπ :B(L)→P(�∗)/∼=L , given byπ (X)=[X]∼=L . We can verify
that this is a bijection and that the operations of ◦ and ∨ are the same. �

So the SCL is the quotient of P(�∗) under the congruence X ∼=Y iff X�� =Y�� iff X� =Y�. The
relation to the syntactic congruence thus becomes even clearer: the syntactic monoid is the quotient
of �∗ under the congruence u≡v iff {u}� ={v}�.

There is a potential confusion here between sets of strings and sets of strings. The relation ∼=L is a
relation between sets of strings: X ∼=L Y , where X,Y are sets of strings. The equivalence class [X]∼=L

is thus a set of sets of strings; a collection whose elements are sets of strings that are congruent to X.
Now it so happens that if Y ,Z are two sets of strings in [X]∼=L then so is Y ∪Z (since it is a congruence
wrt ∨), as is indeed the union of all the elements of [X]∼=L .

Proposition 4.16
Let [X]∼=L be the set of all sets of strings congruent to X. Then

⋃{Y |Y ∼=L X}=X�� ∼=L X. Or,⋃{Y |Y ∼=L X}∈[X]∼=L .

[X]∼=L is a set of sets of strings. The union of all the sets in [X]∼=L is a set of strings
⋃

Y∈[X]Y which
is equal to X�� which happens to be in [X]. So ∼= is a partition of the set of all sets of strings. A given
set of strings will be in only one concept—its closure. A given string u may be in a variety of closed
sets of strings, some large and some small—the largest will be �∗ and the smallest will be {u}��.

 at U
niversity of Sheffield on July 7, 2014

http://logcom
.oxfordjournals.org/

D
ow

nloaded from

http://logcom.oxfordjournals.org/

[17:37 1/8/2013 ext037.tex] LogCom: Journal of Logic and Computation Page: 17 1–27

The syntactic concept lattice 17

We can now start to state the universal property of the syntactic concept lattice.

Proposition 4.17
The natural map ζL :P(�∗)→B(L) given by ζ (X)=X�� is a CIS-homomorphism.

Proposition 4.18
The residual of this is ζ ∗

L :B(L)→P(�∗) which is just the identity on sets of strings; the natural
embedding of the closed sets of strings in P(�∗); ζ ∗

L (〈S,C〉)=S.

We will now show that this is the coarsest congruence that recognizes L. If it is any coarser (i.e.
fewer larger classes) then it will not have L in it. Therefore this is the unique smallest structure that
we can use to interpret this language.

Proposition 4.19
B(L) recognizes L, through the morphism X →X��.

Proof. Immediate; since L�� =L, so h(L)=L and therefore h∗(h(L))=L. �
We now prove an important technical lemma; informally it says that any lattice that recognizes

this must be ‘finer’ (larger, more elaborate) than the syntactic context lattice.

Lemma 4.20
Suppose, A is some CIS that recognizes L through a morphism h. Suppose there are two sets of strings
X,Y such that h(X)=h(Y); then ζL(X)=ζL(Y). (i.e. X� =Y�)

Proof. Suppose (l,r)∈X�. That means that lXr ⊆L; so h(lXr)≤h(L) since h is monotonic. This
implies that h({l})◦h(X)◦h({r})≤h(L) using the fact that h is a homomorphism. So h({l})◦
h(Y)◦h({r})≤h(L) since h(X)=h(Y). Therefore h({l}Y{r})≤h(L) since it is a homomorphism. So
h∗(h({l}Y{r}))≤h∗(h(L)) since h∗ is monotonic. Now h∗(h(L))=L since A recognizes L So using the
fact that h∗(h(X))≥X we have {l}Y{r}≤h∗(h({l}Y{r}))≤h∗(h(L))=L. So (l,r)∈Y�. The converse
argument is identical and so X� =Y�. �

See Figure 4 for a diagram that illustrates this. The following proposition says that the SCL is
(isomorphic to) the smallest CIS that recognizes L; it is the terminal element of the appropriate
category.

Figure 4. The syntactic concept lattice: the coarsest congruence of P(�∗) that recognizes L. Fine
congruences are on the left and on the far right is the coarsest congruence of all with only one
congruence class. Congruences that recognize L are shaded green. Congruences that do not are
shaded red. C1 is the trivial one element CIS. If M is a CIS that recognizes L through the morphism
h then there is a homomorphism from M to P(�∗)/=̃L , hL such that ζL =h ·hL .

 at U
niversity of Sheffield on July 7, 2014

http://logcom
.oxfordjournals.org/

D
ow

nloaded from

http://logcom.oxfordjournals.org/

[17:37 1/8/2013 ext037.tex] LogCom: Journal of Logic and Computation Page: 18 1–27

18 The syntactic concept lattice

Proposition 4.21
If we have a lattice B that recognizes L through a morphism h, then there is a morphism hL from B to
B(L) such that ζL =h◦hL . Therefore the smallest CIS that recognizes L is unique up to isomorphism.

Proof. Define hL(h(X))=ζL(X). This is well-defined by Lemma 4.20. We can verify easily that it
is a morphism. �

This is again a consequence of the isomorphism theorems.

5 CFG morphisms

We can now make clear the relation between these morphisms between semirings, and representations
such as CFGs. The semirings, on our view, are merely a way of talking about CFGs and their
morphisms in a more algebraic way; a method to talk about the ‘semantics’ of CFGs.6 We now make
the link to CFGs; and in particular we will link the semantic notion of a morphism—a homomorphism
between CISs—with the syntactic notion—a morphism between grammars.

We start by defining some standard notions of mappings between CFGs; the definitions are
straightforward extensions of the idea of morphisms between finite automata [26]; we will give
them in full since we have not so far been able to find them in the literature.

Definition 5.1
Assume we have two CFGs, G1 =〈�,V1,S1,P1〉 and G2 =〈�,V2,S2,P2〉, defined over the same
terminal alphabet �. G1 is a subgrammar of G2 iff V1 ⊆V2, P1 ⊆P2 and S1 =S2.

Proposition 5.2
If G1 is a subgrammar of G2, then L(G1)⊆L(G2).

Definition 5.3
Assume we have two CFGs, G1 =〈�,V1,S1,P1〉 and G2 =〈�,V2,S2,P2〉, defined over the same
terminal alphabet �. Let φ be a function from V1 to V2; we extend it to a function from V1 ∪�
to V2 ∪� by setting φ(a)=a for all a∈�, and thence to a function from (V1 ∪�)∗ by saying that
φ(αβ)=φ(α)φ(β) and φ(λ)=λ. For a production N →α we say that φ(N →α)=φ(N)→φ(α). A
morphism φ from G1 to G2 is such a function from V1 to V2, such that φ(S1)=φ(S2), and φ(P1)⊆P2.

Example 5.4
Suppose G1 has the three non-terminals S,A,B and productions S →AB,S →ASB and A→a,B→b.
L(G1)={anbn|n>0}. Suppose G2 has two non-terminals S,X and productions S →XX,S →XSX
and X →a,X →b. Thenφ defined asφ(A)=X,′φ(B)=X,φ(S)=S is a morphism.φ(A→a)=X →a,
φ(B→b)=X →b, and so on.

Proposition 5.5
If there is a morphism from G1 to G2 then L(G1)⊆L(G2).

We can state a more general result as follows.

6In this context the syntax/semantics distinction refers to the distinction between the rules of the grammar, and the language
it defines, and has nothing to do with the meaning of a sentence or utterance [28].

 at U
niversity of Sheffield on July 7, 2014

http://logcom
.oxfordjournals.org/

D
ow

nloaded from

http://logcom.oxfordjournals.org/

[17:37 1/8/2013 ext037.tex] LogCom: Journal of Logic and Computation Page: 19 1–27

The syntactic concept lattice 19

Proposition 5.6
If there is a morphism from G1 to G2 then for all non-terminals N in G1:

• L(G1,N)⊆L(G2,φ(N))
• C(G1,N)⊆C(G2,φ(N))

Proof. Take a derivation step βNγ ⇒G1 βαγ for some production N →α∈P1. Then, since there is
a morphism, φ, there is a production φ(N)→φ(α) in P2 and thus φ(β)φ(N)φ(γ)⇒G2 φ(β)φ(α)φ(γ).

Suppose N ⇒α1 ⇒···αn ⇒u is a derivation in G1. Then φ(N)⇒φ(α1)⇒···φ(αn)⇒φ(u)=u is
a derivation of u from φ(N) wrt G2.

Suppose S ⇒α1 ⇒···αn ⇒ lNr is a derivation in G1. Then φ(S)⇒φ(α1)⇒···φ(αn)⇒φ(lNr)=
lφ(N)r is a derivation in G2. �

Note that there is not the usual duality between contexts and substrings here—rather both sets get
bigger (or at least no smaller) when we go from G1 to G2.

Corollary 5.7
If there is a morphism from G1 to G2 then for all non-terminals N in G2:

•
⋃

M:φ(M)=N L(G1,M)⊆L(G2,N)
•
⋃

M:φ(M)=N C(G1,M)⊆C(G2,N)

Definition 5.8
The image of G1, φ(G1)=〈�,φ(V1),S2,φ(P1)〉 is a CFG, also which is called the morphic image of
G1 under the morphism φ. This will be a subgrammar of G2.

Definition 5.9
Given a CFG G=〈�,V ,S,P〉, and a function ψ from V into some arbitrary set X, we can define
the morphic image of G to be the grammar ψ(G)=〈�,ψ(V),ψ(S),ψ(P)〉. Clearly ψ is a morphism
from G to ψ(G).

A brief discussion: if ψ is injective—i.e. it is not the case that two distinct non-terminals are
mapped to the same symbol, then this is just a relabelling of G and it defines the same language.
The more interesting case is where we have two or more non-terminals that are mapped to the same
symbol: two distinct non-terminals M,N such that ψ(M)=ψ(N). The new grammar then will be
strictly smaller than the original grammar. In this case it may be that the new grammar will define a
larger language. To take an extreme case, we can map any grammar in CNF to a grammar with one
non-terminal which will normally define the language�∗ or�+. This again is not very interesting—
what we are most concerned with is the case when the resulting grammar, though smaller, defines
the same language.

If there is a bijective morphism between two grammars, then we say they are isomorphic—they
are identical up to a relabelling of non-terminals. We now consider the case where the morphic image
of the grammar defines the same language.

Definition 5.10
A morphism from G1 to G2 is called exact if L(G1)=L(G2).

Definition 5.11
For a CFG G1 if there is a grammar G2 such that there is an exact morphism φ :G1 →G2, (i.e. such
that L(G1)=L(G2)), and there are two non-terminals M,N such that φ(M)=φ(N), then we say that
M and N are mergeable.

 at U
niversity of Sheffield on July 7, 2014

http://logcom
.oxfordjournals.org/

D
ow

nloaded from

http://logcom.oxfordjournals.org/

[17:37 1/8/2013 ext037.tex] LogCom: Journal of Logic and Computation Page: 20 1–27

20 The syntactic concept lattice

Definition 5.12
We say that a CFG is minimal if it does not have any mergeable non-terminals.

Note that this definition does not mean that this is the globally smallest grammar for the language
L(G). It might even have some redundant states that could be removed. Clearly if a grammar has two
non-terminals that are mergeable then we can merge them and get another grammar which defines
the same language but is strictly smaller. Suppose we are interested in minimal CFGs; then we want
to find CFGs that do not have mergeable states; because if we do have mergeable states then the
grammar is not minimal.

6 The universal morphism

We can now join up the (syntactic) CFG-morphisms and the (semantic) CIS-homomorphisms through
the following lemma; any CIS that recognizes a language induces a morphism of the grammar where
we map two non-terminals together if they ‘mean’ the same thing. If the CIS recognizes L then we
will show that the morphism is exact.

Lemma 6.1
Suppose B is a CIS and h a surjective CIS homomorphism from P(�∗)→B. Then let G be a context-
free grammar. Let φ be the CFG-morphism given by φ(N)=h(L(G,N)). Then for all non-terminals
N in G,

L(φ(G),φ(N))⊆h∗(φ(N)).

Proof. We will assume for clarity of exposition that the grammar is in CNF—the proof of the more
general case is straightforward but less legible.

Suppose we have a rule N →PQ in G. Therefore L(G,N)⊇L(G,P)L(G,Q). So h(L(G,N))≥
h(L(G,P))◦h(L(G,Q)).

Then h∗(h(L(G,N)))≥h∗(h(L(G,P))◦h(L(G,Q))) by monotonicity of h∗. By Proposition 4.10
h∗(h(L(G,N)))≥h∗(h(L(G,P)))◦h∗(h(L(G,Q))). Similarly suppose we have a rule N →a in G. So
h(L(G,N))≥h({a}), and h∗(h((L(G,N)))≥h∗(h({a})).

Now suppose that N ′ ∗⇒φ(G) w; we want to show that w∈h∗(N ′). We proceed by induction on the
length of the derivation. Base case: the production is of length 1. Suppose N ′ →a is a production in
φ(G). Then for any production N →a in G such that N ′ =φ(N), h∗(h((L(G,N)))≥h∗(h({a}))≥{a}.
Suppose it is true for all derivations of length at most k, and let N ′ ∗⇒φ(G) w be a derivation of

length k+1 that starts with N ′ →P′Q′ →uv=w, where P′ ∗⇒φ(G) u and Q′ ∗⇒φ(G) v. These last two
derivations must be of length at most k.

Then consider any production N →PQ in G such that φ(N)=N ′, φ(P)=P′ and φ(Q)=Q′ (of
which there must be at least one). Now by the inductive hypothesis, u∈h∗(P′) and v∈h∗(Q′). So
uv∈h∗(P′)h∗(Q′)=h∗(h(L(G,P)))◦h∗(h(L(G,Q))). Now since h∗(h(L(G,N)))≥h∗(h(L(G,P)))◦
h∗(h(L(G,Q))) this means that uv∈h∗(h(L(G,N))). So w∈h∗(φ(N). By induction, it is therefore
true for derivations of any length. �

Clearly this implies the obvious fact that if h is the identity (and therefore so is h∗) this gives an
exact morphism; the morphism which merges non-terminals which generate the same sets of strings.

As a simple corollary we have now the following lemma, which explains our definition of a CIS
recognizing a language through a morphism.

 at U
niversity of Sheffield on July 7, 2014

http://logcom
.oxfordjournals.org/

D
ow

nloaded from

http://logcom.oxfordjournals.org/

[17:37 1/8/2013 ext037.tex] LogCom: Journal of Logic and Computation Page: 21 1–27

The syntactic concept lattice 21

Proposition 6.2
Let G be a CFG that defines the language L and B a CIS that recognizes L through the morphism h.
Then the morphism induced by map φ :N →h(L(G,N)) is an exact CFG-morphism from G to φ(G).

Proof. Since it is a morphism we know that L(φ(G))⊇L(G). Since B recognizes L, h∗(h(L))=L,
so L(φ(G),φ(S))⊆h∗(φ(S))=L. �

Note that this is only an implication: we can have a homomorphism that does not recognize the
language, but where the induced grammar morphism is still exact, i.e. defines the same language.
This could occur, e.g. when we merge two non-terminals M,N , where C(G,M)
L(G,N)⊆L and
C(G,N)
L(G,M)⊆L.

We can now define the universal morphism.

Definition 6.3
Suppose G is a grammar that defines a language L; the universal morphism φL is the CFG-morphism
that for any non-terminal N of G maps N →L(G,N)��.

Note that the universal morphism is an exact morphism by the previous lemma.
We can now state the following proposition, which informally states that if a grammar is minimal

then there is at most one non-terminal for each concept.

Proposition 6.4
If the grammar is minimal, then the universal morphism is injective.

Proof. If there were two non-terminals for a concept, the image under the universal morphism would
have one fewer non-terminal and would thus be smaller than the original grammar, contradicting the
assumption of minimality. �

We may not be able to compute, for an arbitrary CFG whether two non-terminals are mergeable,
but that is to a certain extent irrelevant. This proposition tells us that we can restrict ourselves to
non-terminals that are concepts. We have two consequences—one is that that for every context-free
language we have a grammar where the non-terminals are closed sets of strings; secondly, the simplest
grammars for every language will be of this type. In the next section, we will discuss the special case
of regular languages where the exact computations are possible.

7 Regular languages

In the case of regular languages, we know the lattice will be finite and this simplifies the analysis in a
number of respects. In this case, all of the concepts can be defined using a finite number of substrings.
Accordingly, it is possible to define the same structure using only idempotent semirings rather than
CISs. In this case the construction is called the syntactic semiring and was introduced in [29, 30].
We briefly summarize the syntactic semiring in a notation consistent with this article. Define F(X)
to be the set of all finite subsets of a set X. Then F(�∗) is the free idempotent semiring over �.
Consider a language L⊆�∗. We can define a congruence on F(�∗), given X,Y which are elements
of F(�∗), X ∼L Y iff X� =Y�. That is to say merely the restriction of the congruence to the collection
of finite sets of strings. The quotient F(�∗)/∼L is the syntactic semiring. It can be shown that this
is isomorphic to the SCL in the case of regular languages. Note that since F(�∗) is countable so is
the syntactic semiring. Consider the example Oc

1. In this case the syntactic semiring is countable,
whereas the syntactic concept lattice is uncountable; and there is no element that corresponds to L.

 at U
niversity of Sheffield on July 7, 2014

http://logcom
.oxfordjournals.org/

D
ow

nloaded from

http://logcom.oxfordjournals.org/

[17:37 1/8/2013 ext037.tex] LogCom: Journal of Logic and Computation Page: 22 1–27

22 The syntactic concept lattice

We can also construct a canonical representation. This is the universal CFG for the language and
will contain a morphic image of every (binarized) CFG for the language. We emphasize that in the
case of a non-regular context-free language, we can do the same construction but the resulting object
will be infinite and thus not strictly speaking a grammar. Nonetheless, it will contain as with the finite
case an image of every grammar for the language.

Definition 7.1
Given a regular language L, the universal context-free grammar for the language G(L) is the CFG
〈V ,C(L),�,P〉, where V is the set of concepts of L, and P is the set of productions {Q→RS |Q≥
R◦S}∪{N →a|a∈N,a∈�∪{λ}}.

We can now demonstrate an exact correspondence between the derivations in the grammar, and
the pair of sets of contexts and sets of strings that constitute a non-terminal in the grammar.

Proposition 7.2
For any language L and any concept X = (S,C), we have

– L(G(L),(S,C))=S
– C(G(L),(S,C))=C.

Proof. By induction on the length of a derivation. Suppose S
∗⇒ lXr. We know C(l)

∗⇒ l and C(r)
∗⇒r,

by part 1, and S ≥C(l)◦X ◦C(r) which gives us the two rules. �
Proposition 7.3
Suppose we have a regular language L and a CFG G such that L(G)=L. Then there is an exact
morphism from G to G(L).

Proof. The morphism N → (L(G,N)��,L(G,N)�) is such a morphism. �
Proposition 7.4
The universal grammar does not have any mergeable states.

Proposition 7.5
Given a finite automaton generating a language L, we can effectively construct G(L).

We sketch the technical details for constructing a structure isomorphic to B(L) from a DFA for
L. Take a minimal DFA for L and for each state q, pick a string that reaches q from the start state.
Let this set of strings be A. Do the same thing for a minimal DFA for LR, the reversal of L, to get
a set of strings B. This defines a set of contexts A×BR. Now pick one string from each element
of the syntactic monoid of L to get a set of strings M. The Galois connection between the set of
contexts A×BR and the set of strings M will be isomorphic to B(L), from which it is straightforward
to construct G(L).

We will now give a complete example for a regular language. Consider L= (ab)∗. This has the
7 closed sets of strings: �∗,∅,L,{λ},a(ba)∗,b(ab)∗,(ba)∗. We therefore have 7 non-terminals in
G(L) that we denote �,⊥,S,λ,A,B,R. The lexical rules in the grammar are: �→a,�→b,�→
λ,L→λ,R→λ,A→a,B→b. The start symbol is S. There are 73 possible binary rules of which the
following are in the grammar:

• Any production of the form �→XY .
• Any production of the form X →⊥Y or X →Y⊥.
• Any production of the form X →λX or X →Xλ.
• L→AB|LL

 at U
niversity of Sheffield on July 7, 2014

http://logcom
.oxfordjournals.org/

D
ow

nloaded from

http://logcom.oxfordjournals.org/

[17:37 1/8/2013 ext037.tex] LogCom: Journal of Logic and Computation Page: 23 1–27

The syntactic concept lattice 23

• A→AR|LA
• B→BL|RB
• R→BA|RR

G(L) is a large but finite CFG. For any (binarized) grammar G that defines the same language, φL
is an exact morphism from G to G(L). That is to say this grammar contains a morphic image of every
grammar for the language; this is analogous to the UA which we discuss now.

7.1 The universal automaton

We now consider the relation of the syntactic concept lattice to the UA [12, 27]. We recall the
definition of the UA using the terminology of [27]; interestingly the Galois lattice structure of the
UA does not form part of the standard presentations of the UA.

Definition 7.6
Given a language L, a factorization of L is a maximal pair of sets of strings P,Q such that PQ⊆L.

We can of course consider this as a Galois connection between the prefixes and suffixes.

Definition 7.7
For a set of strings X , define X� ={y|Xy⊆L} and X� ={y|yX ⊆L}.

These are the left and right residuals. A left factor is a set X (of prefixes) such that it is left-closed:
X =X��; conversely a right factor is one where X =X��. A factorization (P,Q) is thus a pair where
P� =Q and Q� =P; clearly P is left-closed and Q is right-closed.

Definition 7.8
For a language L, let UA(L) be the set of all factorizations of L.

Definition 7.9
The UA of a regular language L is defined to be a finite automaton where the states are factorizations,
and where the set of initial states is {(P,Q)|λ∈P}, the set of final states is {(P,Q) |λ∈Q}, and the set
of transitions is defined as {(P,Q)→a (P′,Q′) |PaQ′ ⊆L}.

We now consider a number of close relationships between the UAand the SCLfor a given language.

Proposition 7.10
Let (P,Q) be a factorization of a language. Then both P and Q are closed sets of strings, in the lattice
B(L). i.e. P=P�� and Q=Q��.

Proof. If P is left-closed, then it is closed since P={(λ,P�)}�. Similarly if Q is right-closed, then
Q={(Q�,λ)}�. �

However it is not necessarily the case that (P,λ) or (λ,Q) are closed sets of contexts.
Finally, we note that the set of contexts of the empty string are equivalent to the factorizations.

Proposition 7.11

{λ}� =
⋃

(P,Q)∈U A(L)

P×Q

Proof. Suppose (P,Q) is a factorization; Therefore P×Q
λ=PQ⊆L, so P×Q⊆{λ}�. Conversely
if (l,r) in {λ}�, then lr ∈L so (l,r) must be an element of at least one maximal factorization. �

 at U
niversity of Sheffield on July 7, 2014

http://logcom
.oxfordjournals.org/

D
ow

nloaded from

http://logcom.oxfordjournals.org/

[17:37 1/8/2013 ext037.tex] LogCom: Journal of Logic and Computation Page: 24 1–27

24 The syntactic concept lattice

8 Discussion

The SCL appears quite naturally under several equivalent definitions; as the Galois connection
between strings and contexts; as the set of maximal decompositions of the language into strings
and contexts, and as the unique minimal CIS that recognizes a language. It can be seen as the
lifting of the syntactic congruence to sets of strings rather than strings. It forms the basis for various
algorithms for grammar induction. It also has deep relations with the syntactic congruence and the
UA. These considerations suggest that it is worthy of sustained analysis and study, as it potentially
can give rise to new algorithms for various problems associated with CFGs.

Additionally realizing that these structures are also residuated lattices, has as a consequence that
they can be used to give a complete and sound semantics for the Lambek calculus [10, 33]. This
gives a new perspective on the slightly troubled relationship between Lambek grammars and CFGs;
the SCL is a point at which these two formalisms seems to make contact in a way very similar to
Lambek’s original conception. Lambek justifies the rules of his calculus by appeal to the soundness
of the deduction system with respect to residuated lattices and later says [24]

We shall assign type n to all expressions which can occur in any context in which all proper
names can occur.

If we write N for the set of all proper names, then the set of contexts in which all proper names can
occur is N�, and so this states, in our terminology, that the type n should be assigned to the set N��.
Thus the types of the Lambek calculus were, it appears, intended to be closed sets of strings.

The phrase ‘an algebraic theory of context-free languages’ and indeed the now rather dated term
‘algebraic language’ for context-free language, has been used in a number of different contexts
[4], as part of a program to base language theory not on phrase structure grammars or on machine
models (finite-state automatons or push-down automata) but rather on some algebras (e.g. [21]). The
work we present here can be considered as part of the same research program; rather than dealing
directly with the productions of a CFG, we operate with an algebraic structure that interprets it; a CIS.
Homomorphisms of this structure can then be used to model transformations, i.e. morphisms, of the
original grammar. We then naturally arrive at a unique object for each grammar, the terminal element
of a category, and thus a universal morphism for CFGs. This gives us a set of syntactic categories
that can be used as non-terminals in a grammar; under the assumption that we want the grammar to
be minimal in a fairly obvious sense, we can without loss of generality assume that the grammar uses
only these non-terminals. Each production then has an easily interpretable form as an inequality (or
equality) between these syntactic categories.

Though the computational problems of constructing the syntactic concept lattice from a CFG is in
general undecidable, it is straightforward to approximate it. By picking some finite set of contexts
and finite set of substrings, and using a standard parser, we can efficiently compute a fragment of the
lattice. This process relies only on information about the set of strings in the language and can thus
be used as the basis for a variety of learning algorithms. Non-terminals in the grammar are defined
which correspond to specific concepts in the lattice of the language being learned. The algorithm
can either pick a finite set of strings S, which defines the concept C(S), or a finite set of contexts
C, which defines the concept C(C�). Algorithms that use the former assumption are called primal
and ones that use the latter are called dual. Given a suitable set of non-terminals defined primally,
dually or using a combination of the two, the algorithm can then define a set of rules, which, given the
objective nature of the non-terminals, is straighforward. Given non-terminals N,P,Q that correspond
to concepts N ,P,Q we want a production N →PQ if and only if N ≥P ◦Q. Testing this inequality
depends on how the non-terminals are defined, but in general the validity of the inequality depends

 at U
niversity of Sheffield on July 7, 2014

http://logcom
.oxfordjournals.org/

D
ow

nloaded from

http://logcom.oxfordjournals.org/

[17:37 1/8/2013 ext037.tex] LogCom: Journal of Logic and Computation Page: 25 1–27

The syntactic concept lattice 25

only on the concepts used in the inequality. This means that we replace the problem of testing the
global validity of an entire grammar with a test which is local and computationally tractable. This
massively simplifies the process of constructing a grammar for a language, and allows for efficient
learning algorithms under a number of different models [8, 34, 35].

The UA has been used as the basis for algorithms for minimizing regular grammars; for finding the
smallest NFA that generates a given regular language. Though the problem of finding the minimal
NFAthat generates the same language as a given DFAis known to be PSPACE-complete [22], various
algorithms have been proposed using the UA as a search space. Although the problem of finding the
minimal CFG that generates the same language as a given CFG is clearly undecidable, we could use
the SCL to find the smallest CFG that generates a given regular language, presented as an automaton,
using an exhaustive search through the SCL.

This has a number of implications also for linguistics, where phrase structure grammars, of which
CFGs are the simplest type, are widely used. Classically we identify the parse tree generated by the
phrase structure grammar with the syntactic structure of the sentence, and the syntactic categories
correspond therefore to the non-terminals of the grammar. From the perspective taken here, the
minimality of grammars whose non-terminals are syntactic concepts is a very strong argument in
favour of the use of syntactic concepts as syntactic categories in linguistic description. To rebut
this argument would require an argument that the correct grammar is redundant in the sense that it
contains mergeable non-terminals. In the absence of such an argument we can conclude, that at least
in the domain of CFGs, that syntactic structure must supervene on distributional structure; which
gives a strong in principle argument for the central importance of distributional analysis in linguistic
theory.

Acknowledgements

I am very grateful to Ryo Yoshinaka and Hans Leiss for extensive technical discussions on the
syntactic concept lattice, which have greatly improved, corrected and simplified the presentation;
any remaining errors are of course my own. I am also especially grateful to Hans Leiss for pointing
out the connection to compete idempotent semirings. I would also like to thank the anonymous
reviewers for helpful suggestions.

References
[1] D. Angluin. Inference of reversible languages. Journal of the ACM, 29, 741–765, 1982.
[2] D. Angluin. Learning regular sets from queries and counterexamples. Information and

Computation, 75, 87–106, 1987.
[3] B. Bollig, P. Habermehl, C. Kern, and M. Leucker. Angluin-style learning of NFA. In

Proceedings of IJCAI 21, 2009.
[4] N. Chomsky and M. P. Schützenberger. The algebraic theory of context-free languages. Studies

in Logic and the Foundations of Mathematics, 35, 118–161, 1963.
[5] A. Clark. Distributional learning of some context-free languages with a minimally adequate

teacher. In Grammatical Inference: Theoretical Results and Applications. Proceedings of the
International Colloquium on Grammatical Inference, J. Sempere and P. Garcia, eds, pp. 24–37.
Springer, 2010.

[6] A. Clark. Efficient, correct, unsupervised learning of context-sensitive languages. In Proceed-
ings of the Fourteenth Conference on Computational Natural Language Learning, pp. 28–37,
Uppsala, Sweden. Association for Computational Linguistics, 2010.

 at U
niversity of Sheffield on July 7, 2014

http://logcom
.oxfordjournals.org/

D
ow

nloaded from

http://logcom.oxfordjournals.org/

[17:37 1/8/2013 ext037.tex] LogCom: Journal of Logic and Computation Page: 26 1–27

26 The syntactic concept lattice

[7] A. Clark. Learning context free grammars with the syntactic concept lattice. In Grammatical
Inference: Theoretical Results and Applications. Proceedings of the International Colloquium
on Grammatical Inference, J. Sempere and P. Garcia, eds, pp. 38–51. Springer, 2010.

[8] A. Clark. Three learnable models for the description of language. In Language and Automata
Theory and Applications, Fourth International Conference, LATA 2010, LNCS, C. Martín-Vide,
A.-H. Dediu, and H. Fernau, eds, pp. 16–31. Springer, 2010.

[9] A. Clark. A learnable representation for syntax using residuated lattices. In Formal Grammar,
P. Groote, M. Egg, and L. Kallmeyer, eds, vol. 5591 of Lecture Notes in Computer Science,
pp. 183–198. Springer, 2011.

[10] A. Clark. Logical grammars, logical theories. In Logical Aspects of Computational Linguistics,
D. Bechet and A. Dikovsky, eds, pp. 1–20. Springer, 2012.

[11] A. Clark and R. Eyraud. Polynomial identification in the limit of substitutable context-free
languages. Journal of Machine Learning Research, 8, 1725–1745, 2007.

[12] J. H. Conway. Regular Algebra and Finite Machines. Chapman and Hall, 1971.
[13] B. A. Davey and H. A. Priestley. Introduction to Lattices and Order. Cambridge University

Press, 2002.
[14] F. Denis, A. Lemay, and A. Terlutte. Learning regular languages using RFSAs. Theoretical

Computer Science, 313, 267–294, 2004.
[15] S. Eilenberg. Automata, Languages, and Machines. Academic Press, 1974.
[16] Z. Ésik and H. Leiß. Algebraically complete semirings and Greibach normal form. Annals of

Pure and Applied Logic, 133, 173–203, 2005.
[17] N. Galatos, P. Jipsen, T. Kowalski, and H. Ono. Residuated Lattices: An Algebraic Glimpse at

Substructural Logics. Elsevier, 2007.
[18] B. Ganter and R. Wille. Formal Concept Analysis: Mathematical Foundations. Springer, 1997.
[19] S. Ginsburg and H. G. Rice. Two families of languages related to ALGOL. Journal of the ACM

(JACM), 9, 350–371, 1962.
[20] J. S. Golan. Semirings and their Applications. Springer, 1999.
[21] G. Hotz. A representation theorem of infinite dimensional algebras and applications to language

theory. Journal of Computer and System Sciences, 33, 423–455, 1986.
[22] T. Jiang and B. Ravikumar. Minimal NFA problems are hard. SIAM Journal on Computing, 22,

1117–1141, 1993.
[23] P. Jipsen. From semirings to residuated Kleene lattices. Studia Logica: An International Journal

for Symbolic Logic, 76, 291–303, 2004.
[24] J. Lambek. The mathematics of sentence structure. American Mathematical Monthly, 65, 154–

170, 1958.
[25] H. Leiss. Learning CFGs with the finite context property: a note on A. Clark’s algorithm.

Manuscript, 2012.
[26] S. Lombardy. On the size of the universal automaton of a regular language. In STACS 2007,

W. Thomas and P. Weil, eds, vol. 4393 of Lecture Notes in Computer Science, pp. 85–96.
Springer, 2007.

[27] S. Lombardy, J. Sakarovitch. The universal automaton. In Logic and Automata: History and
Perspectives, J. Flum, E. Grädel, and T. Wilke, eds, vol. 2, pp. 457–504. Amsterdam University
Press, 2008.

[28] F. C. N. Pereira and S. M. Shieber. The semantics of grammar formalisms seen as computer
languages. In Proceedings of the 10th International Conference on Computational Linguistics
and 22nd Annual Meeting on Association for Computational Linguistics, pp. 123–129.
Association for Computational Linguistics, 1984.

 at U
niversity of Sheffield on July 7, 2014

http://logcom
.oxfordjournals.org/

D
ow

nloaded from

http://logcom.oxfordjournals.org/

[17:37 1/8/2013 ext037.tex] LogCom: Journal of Logic and Computation Page: 27 1–27

The syntactic concept lattice 27

[29] L. Polák. Syntactic semiring of a language. In Mathematical Foundations of Computer Science
2001, J. Sgall, A. Pultr, and P. Kolman, eds, pp. 611–620. Springer, 2001.

[30] L. Polák. Syntactic semiring and universal automaton. In Developments in Language Theory,
Z. Ésik, and Z. Fülöp, eds, pp. 411–422. Springer, 2003.

[31] M. O. Rabin and D. Scott. FiniteAutomata and their decision problems. IBM Journal of Research
and Development, 3, 114–125, 1959.

[32] J. Sakarovitch. Elements of Automata Theory. Cambridge University Press, 2009.
[33] C. Wurm. Completeness of full Lambek calculus for syntactic concept lattices. In Proceedings

of the 17th conference on Formal Grammar 2012 (FG), 2012.
[34] R. Yoshinaka. Towards dual approaches for learning context-free grammars based on syntactic

concept lattices. In Developments in Language Theory, G. Mauri and A. Leporati, eds, vol. 6795
of Lecture Notes in Computer Science, pp. 429–440. Springer, 2011.

[35] R. Yoshinaka. Integration of the dual approaches in the distributional learning of context-free
grammars. In LATA, A.-H., Dediu, and M.-V., Carlos, eds, pp. 538–550. Springer, 2012.

Received 8 March 2013

 at U
niversity of Sheffield on July 7, 2014

http://logcom
.oxfordjournals.org/

D
ow

nloaded from

http://logcom.oxfordjournals.org/

	The syntactic concept lattice: Another algebraic theory of the context-free languages?
	1 Introduction
	2 Preliminaries
	3 The syntactic concept lattice
	4 Universal property
	5 CFG morphisms
	6 The universal morphism
	7 Regular languages
	8 Discussion

