
Logical Grammars, Logical Theories

Alexander Clark

Department of Computer Science
Royal Holloway, University of London

Egham, TW20 0EX
United Kingdom

alexc@cs.rhul.ac.uk

Abstract. Residuated lattices form one of the theoretical backbones of
the Lambek Calculus as the standard free models. They also appear in
grammatical inference as the syntactic concept lattice, an algebraic struc-
ture canonically defined for every language L based on the lattice of all
distributionally definable subsets of strings. Recent results show that it is
possible to build representations, such as context-free grammars, based
on these lattices, and that these representations will be efficiently learn-
able using distributional learning. In this paper we discuss the use of
these syntactic concept lattices as models of Lambek grammars, and use
the tools of algebraic logic to try to link the proof theoretic ideas of the
Lambek calculus with the more algebraic approach taken in grammatical
inference. We can then reconceive grammars of various types as equa-
tional theories of the syntactic concept lattice of the language. We then
extend this naturally from models based on concatenation of strings,
to ones based on concatenations of discontinuous strings, which takes
us from context-free formalisms to mildly context sensitive formalisms
(multiple context-free grammars) and Morrill’s displacement calculus.

1 Introduction

Logic is concerned with proof; in the logical grammar tradition the role of proof
is central and well understood [1]. But logic is also concerned with truth – and
what does it mean for a grammar, such as a Lambek grammar, to be true? What
can it be true of? This is a problem not of proof theory but of model theory, and
while there has been a great deal of work on models for the Lambek calculus [2],
these are models for the calculus, not for the grammars. These models are free –
the only statements that are true in these models are things that are true of all
languages – but this seems to be inappropriate – there are things that are true
of some languages and not of others; true about English but not about French
or Dyirbal.

A Lambek grammar consists only of a finite set of type assignments: (w, T)
where w is a nonempty sequence, typically of length 1, and T is a type. Therefore
the question of the truth of the grammar reduces to the question of the truth of
the type assignments. The metatheory of Lambek grammar is explained in [3]
and [4]. Several things are clear: first the types in the grammar are intended to

refer to sets of strings in a given language, and the composite types A•B, C/B,
A\C and the associated calculus are motivated and justified by the algebraic
properties of the associated operations on these sets. The following quotes from
[4] lay out the metatheoretical assumptions. First

Sets of strings of English words will be called (syntactic) types.

Secondly, that the operations are ‘free’:

When applying this notation to a natural language . . . we are thinking
of the . . . system . . . freely generated by the words of the language under
concatenation.

Finally, that the starting point for constructing a grammar is to model an exist-
ing language. Lambek does not conceive of this as a learning problem, but as a
modeling problem in the structuralist tradition. Rather than defining a grammar
G in vacuo and then showing how that grammar defines a language L — the
generative stance — he starts with a language L∗, and constructs a grammar
G(L∗), — the descriptive approach — using a non-algorithmic method:

One can continue playing this game until every English word has
been assigned a finite number of types.

One hopes that the grammar defined in this way will define a language which is
equal to the original language L∗, a condition Lambek states as follows:

One may consider the categorial grammar to be adequate provided it
assigns type S to w if and only if the latter is a well-formed declarative
sentence according to some other standard.

Lambek’s specific proposals within this metatheoretical program include what
are now called Lambek grammars, and later, pregroup grammars. Others have
studied the relationship between types and sets of strings; specifically Buszkowski
in [5], and the possibilities of developing the informal process of construction of
a grammar into an algorithmically well-defined learning procedure [6, 7].

In this paper we will take a different tack, motivated again by a focus on
learnability. We are interested in identifying formalisms that are not only de-
scriptively adequate but that also can be learned from the data in a principled
way – in Chomskyan terms, in achieving explanatory adequacy. Defining the
types as sets of strings seems a reasonable first step. We can in a similar vein
consider nonterminal symbols in a context-free grammar to be sets of strings:
namely the set of strings that can be derived from that nonterminal. For a cfg
G, with a nonterminal N we define as usual L(G,N) = {w | N ∗⇒G w}. A sym-
bol NP which represents noun phrases can be considered as the set of strings
that can be noun phrases; the start symbol S corresponds to the language L
itself.

In Lambek grammars and other categorial grammars, we have the same cor-
respondence, but it is more complex. We can associate with each type, primitive

or complex, a set of strings: say v(T), the value of that type. There is a compli-
cation because the types are no longer atomic elements but have some structure.
So a type might be of the form A/B: in this case we can ask, what is the relation-
ship between v(A/B) and v(A) and v(B)? In particular what is the relationship
between v(A/B) and v(A)/v(B)? Clearly this depends on how we define the
function v.

More fundamentally, if the primitive types are sets of strings, then what
sets of strings are they? We now have a good understanding of how learnability
affects the answer to this question, at least in the context of cfgs. Learnable
representations are almost invariably based on objective or empiricist represen-
tations where the structure of the representation is based on the structure of the
data: the language itself. The research program is then to identify structures of
various type in the data, and then define representations that exploit algebraic
properties of this structure. The classical example of this is the canonical deter-
ministic finite automaton being based on the Myhill-Nerode congruence, which
gives rise to the theory of regular grammatical inference [8–10]. When learning
cfgs, the sets of strings corresponding to each nonterminal must correspond to
distributionally definable sets. In the most basic models we define them to be
congruence classes [11] or the sets of strings that can occur in a given context
[12]. The syntactic concept lattice (scl) of a language [13] is defined by look-
ing at the relation between substrings and contexts in languages. This has now
given rise to several different learnability results and formalisms [14–16]. The
scl is a residuated lattice. These objects are well known as models of various
types of substructural logics [17], and as one of the foundations of the Lambek
calculus. Thus a natural question arises as to the precise nature of the relation-
ship between Lambek grammar and grammars of various types based on the
scl. It might be possible, for example, to construct efficient learning algorithms
for some subclasses of categorial grammars — [7] showed that some interesting
classes are learnable, though [18] showed that there are computational problems
with this approach. Conversely, it might be possible to adapt the elegant syntax-
semantics interface of categorial and type-logical grammars to these learnable
models.

There is an additional connection between Lambek grammars and distribu-
tional learning. Learning is in some sense the inverse of generation: learning is
an inverse problem. The slash operators /, \ are the left and right residuals (a
type of inverse) of concatenation and thus have a crucial role in the inference
process; they also correspond directly to distributional properties.

More precisely, if we have a set of strings X and a language L, the set L/X
which we define as {u|∀v ∈ X,uv ∈ L} is exactly the set of strings that has a
certain distributional property. Namely, using notation which we present later,
it is the set of all strings that can occur in all of the contexts {�v|v ∈ X}. This
is also something noted in [3] where Lambek explicitly defines the motivating
operations in distributional terms, as we shall see later.

This paper examines the relationship between the structure of this lattice,
and the structure of models of Lambek grammar. Our main claim is that we can

better meet the metatheoretical objectives of Lambek’s program by basing the
grammars we use on the scl, and that more generally we can look at grammars
as being sets of equations that describe algebraic structures associated with the
language.

2 Residuated lattices

We will start with some standard definitions. A monoid is a simple associative
algebraic structure, 〈M, ◦, 1〉 where M is a set, ◦ is an associative binary op-
eration and 1 is a left and right unit. The standard example is the set of all
strings over a finite alphabet Σ under concatenation; which we write Σ∗, with
the empty string denoted by λ. This is the free monoid generated by Σ. In what
follows we will assume we have some fixed nonempty set Σ. A (formal) language
is a subset of Σ∗.

A context is just an ordered pair of strings that we write l�r. l and r refer to
left and right; � is a symbol not in Σ. 1 We can combine a context l�r with a
string u with a wrapping operation that we write �: so l�r� u is defined to be
lur. We will sometimes write f for a context l�r. The empty context we write
�. Clearly �� x = x.

We will fix a formal language L ⊆ Σ∗; this then defines a relation between
contexts l�r and strings w given by l�r ∼L w iff lwr ∈ L. The distribution of
a string w is defined as CL(w) = {l�r|lwr ∈ L}. We can define a congruence
relation based on distributional equivalence with respect to a language L. We say
u ≡L v iff CL(u) = CL(v). This is an equivalence relation and a congruence; we
write [u]L = {v | u ≡L v}. This gives us a second relevant example of a monoid:
the syntactic monoid which is the quotient monoid Σ∗/ ≡L, whose elements are
the congruence classes and where the natural concatenation operation, [u]L ◦
[v]L = [uv]L, is well defined as this is a congruence. This is not free: this has a
nontrivial algebraic structure that depends on the language; it can be a group,
it can be Abelian, it can be finite or infinite. Indeed this is finite iff the language
L is regular.

The second class of structures we are interested in are lattices; which are
partially ordered sets with least upper bounds (join, written ∨) and greatest
lower bounds (meet, written ∧). The classic example is the lattice of all subsets
of a given set, where meet is set intersection and join is set union. Given the
meet operation we can define the partial order as X ≤ Y iff X = X ∧ Y .

A residuated lattice is a combination of these two structures — a monoid
and a lattice — where the two structures must interact ‘nicely’. Formally we
say that it is a tuple 〈M, ◦, 1,∧,∨, /, \〉, where M is a set, ◦,∧,∨, /, \ are binary
operations and 1 is a constant, such that 〈M, ◦, 1〉 is a monoid, and 〈M,∧,∨〉 is
a lattice.

1 In previous work we have written a context as an ordered pair (l, r). This causes con-
fusion when we consider discontinuous strings, and so here we use this less ambiguous
notation.

We can state the interaction requirement as the fact that the following three
conditions are equivalent:

X ◦ Y ≤ Z iff X ≤ Z/Y iff Y ≤ X\Z

This is a slightly stronger requirement than mere monotonicity. The classic
example of this is the set of all languages over Σ∗, which we denote by 2Σ

∗
,

and where the lattice operations are set intersection and union, and where ◦ is
defined to be simple concatenation M ·N = {uv|u ∈M,v ∈ N} and the residuals
are defined naturally to be

M/N = {u|∀v ∈ N, uv ∈M}
N\M = {u|∀v ∈ N, vu ∈M}

It is easy to verify that these definitions satisfy the axioms of residuated lattices.
Note that of course ◦ is not commutative. This lattice is distributive, but in
general these lattices are not. We will use for the rest of the paper this ‘result
on top’ notation, for consistency with the literature in residuated lattices.

Given the definitions it is easy to see that (X/Y) ◦ Y ≤ Y . Similarly it is
easy to establish the following identities, and many others, which will be very
familiar to those who know the Lambek calculus.

Composition (X/Y) ◦ (Y/Z) ≤ (X/Z) and (Z\Y) ◦ (Y \Z) ≤ (Z\X)

Associativity (Z\X)/Y = Z\(X/Y)

Lifting X ≤ Y/(X\Y) and X ≤ (Y/X)\Y .

However there are also identities that have no counterparts in the Lambek
calculus. These are ones that use the operations ∧ and ∨ such as for example
the fact that X ∧ Y ≤ X. These are however valid in the full Lambek calculus,
augmented with appropriate inference rules for these connectives.

2.1 Syntactic Concept Lattice

Given a particular language, L, we have a particular monoid, the syntactic
monoid of that language. In just the same way, there is a residuated lattice
associated with the language that we call the syntactic concept lattice. This is
the lattice of all distributionally definable subsets of strings in a language; we
will denote this B(L).

There are a number of equivalent ways of defining this; we will use a way
which emphasizes the links with Galois connections and residuated maps. As
noted above, we can consider the relation between strings and contexts defined
by a language. Given this relation we can then define two maps from sets of
strings to sets of contexts and vice-versa. These are traditionally called ‘polar’
maps and we will denote them both by the use of ′. Intuitively, given a set of
strings S, we can define the set of contexts S′ to be the set of contexts that

appear with every element of S. This is sometimes called the distribution of the
set S in the language L.

S′ = {l�r | ∀w ∈ S lwr ∈ L} (1)

If S consists of a single string w, then S′ is just the same as CL(w). If S
contains two strings, then it will be the intersection of the distribution of those
two strings. Clearly if S ⊆ T then S′ ⊇ T ′ – as we make the set of strings larger,
the intersection of their distributions will only decrease.

Dually, we can define for a set of contexts C the set of strings C ′ that occur
with all of the elements of C

C ′ = {w | ∀ l�r ∈ C lwr ∈ L} (2)

Consider now for any set of strings S the set of strings S′′. It is easy to verify
that S′′ ⊇ S, and furthermore that (S′′)′′ = S′′ – in other words, this is a closure
operation. We say that the set of strings S is closed iff S = S′′.

Note that for any set of contexts C, C ′ is a closed set of strings. We can thus
define a closed set of strings in two ways: either by picking a set of strings S and
closing it to get S′′ or by picking a set of contexts C which defines the set C ′.
We call the former method a primal method, and the latter a dual method.

It is easy to see that L itself is a closed set of strings. L′ will contain the
empty context �. As a result any string in L′′ must occur in the context � and
is thus in L; therefore L = L′′. Similarly Σ∗ is always closed.

We can consider, for a language L, the set of all closed sets of strings of the
language. Interestingly, this set is finite if and only if the language is regular.
For example, the language L = Σ∗ only has one closed set of strings, Σ∗. The
infinite regular language L = (ab)∗ has 7 closed sets of strings. These consist of
the four sets ∅, {λ}, L,Σ∗ together with 3 other sets which are bL, La and bLa.

These closed sets form a lattice – the partial order is given by set inclusion
and meet and join are defined as S ∧ T = S ∩ T and S ∨ T = (S ∪ T)′′. We
define a concatenation operation ◦ of two closed sets of strings as S ◦T = (ST)′′;
ST is not necessarily a closed set, and so to make the operation well defined
we take the closure. Note the difference between this definition and ‘normal’ set
concatenation S · T . Given the language (ab)∗, if we concatenate the two closed
sets of strings La and bL, we get the language LabL = (ab)+. This is not closed:
((ab)+)′′ = (ab)∗ = L. So La ◦ bL = L which is not equal to LabL.

While the concatenation is different from concatenation in the lattice 2Σ
∗
,

there are two residual operations which are identical. Thus if S and T are closed
then S/T and S\T are also closed. We can verify that the closed sets of strings
with respect to a language L form a residuated lattice, which we denote B(L).
See [13] for further details 2. Note that the natural map from 2Σ

∗ → B(L), given
by hL(S) = S′′ is a homomorphism of ◦,∨ and 1.

2 In that paper we present the lattice as a collection of ordered pairs of sets of strings
and sets of contexts. In this paper we will consider the mathematically equivalent
formulation just as sets of strings.

3 Types should be closed sets of strings

Let us now start to consider the relationship between the scl, B(L), and the
system of types that is used by Lambek grammars. This can be framed in a
number of different ways, mathematically, conceptually and empirically.

The empirical question is whether, in natural languages, the types correspond
to closed sets of strings. Lambek clearly thought so: indeed we find in [3] the
following statement:

We shall assign type n to all expressions which can occur in any
context in which all proper names can occur.

Let us look at this statement carefully. Suppose we have a language L and a
set of strings N that is the set of proper names. The set of contexts in which all
proper names can occur is just the set N ′ using the polar maps defined earlier.
The set of expressions which can occur in any of N ′ is just N ′′. So the type n
corresponds exactly to the closed set of strings N ′′; since the start symbol S
corresponds to the language L, then all product free types will correspond to
closed sets of strings.

The second way of looking at this is as a mathematical claim: is it the case
that for all Lambek grammars, the types correspond to closed sets of strings?
Here we can give a clear negative answer: it is easy to construct Lambek gram-
mars where the types correspond to quite arbitrary sets of strings. For example
consider the language L = {anbnc | n > 0}. The closure of {ab} is {anbn | n > 0},
but one could write a grammar where there is a type which generates any finite
or infinite context-free subset of that closed set.

Conceptually, we can make additional arguments in favour of this represen-
tational assumption. Given that we have exactly this structure why would we
impose another structure on it? Using a Lambek grammar implicitly imposes
a residuated lattice structure on the language [5]. On grounds of general par-
simony, in the absence of a convincing reason to use a different structure, we
should use a grammar which follows the existing objectively valid empirically
based structure, rather than using some other more arbitrary one: a convincing
reason would be if the restriction affected the weak or strong generative capacity
of the formalism. We now consider this possibility.

3.1 Weak generative power

Lambek grammars can represent any context-free language. However if we add
the restriction that the types must correspond to closed sets of strings, then it
is natural to ask whether we lose any weak generative power. The somewhat
surprising answer is that we do not.

Suppose we have a context-free language defined by a cfg, G, which we
assume is in Greibach normal form. For each nonterminal N we define a set of
strings which is the closure of the set of strings in the yield of N : {w|N ∗⇒G w}′′.
And for each terminal symbol a we define a type A which has value v(A) = {a}′′.

For an element of (V ∪Σ)+ we extend the type function v using ◦, in the obvious
way: v(aβ) = v(a) ◦ v(β) and v(Nβ) = v(N) ◦ v(β). We can then prove that if
N → α is a production then v(N) ⊇ v(α) [15]. We can therefore construct a
categorial grammar in the standard way since if the rule is N → aM1 . . .Mk

then a ∈ v(N/Mk/ . . . /M1), and so we can assign the type N/Mk/ . . . /M1 to a.
Any derivation of a string with respect to the cfg can be turned into a valid
derivation with respect to the Lambek grammar, and, conversely, any string
generated by the Lambek grammar will be in the language by the soundness of
the Lambek calculus.

3.2 Strong generative capacity

In contrast, from the point of view of strong generative capacity, that is to say in
terms of the sets of structural descriptions that our grammar assigns to strings,
we do give up some modeling power. In particular we lose the ability to describe
distributionally identical strings in different ways. More precisely, we can propose
the following principle: If for two letters a, b ∈ Σ, the distribution of a is a subset
of the distribution of b, then for any strings l, r the set of structural descriptions
assigned to lar must be a subset of the set of structural descriptions assigned to
lbr, modulo some relabeling to reflect the difference between a and b.

If, for example, two letters are distributionally identical, then in this model,
they must be treated identically. In a normal Lambek grammar, or context-free
grammar, we are free to treat them as being completely different. Consider the
following example: a language L which has two different grammars which are
weakly equivalent but assign different structural descriptions to the strings. To
be concrete, suppose we have (ab)+ which admits the two cfgs, G1 which has
productions S1 → ab, S1 → abS and G2 which has the productions S2 → ab
S2 → aTb, T → ba, T → bS2a. Consider the language (c|d)(ab)+. We could have
a grammar then with two rules S → cS1 and S → dS2. This will assign different
trees to strings starting with c and strings starting with d even though c and
d are in this case completely distributionally identical. This sort of situation is
ruled out by this model – if natural languages had this sort of behaviour then
the type of distributionally motivated model that we propose here would be
clearly incorrect. If on the other hand there is this type of connection between
the distributional properties and the structural properties of the language, then
this would indicate that we are on the right track.

3.3 Consequences

Let us now proceed on the assumption that we want the types in our grammar
to correspond to closed sets of strings. We fix a target language L∗. We start by
leaving the Lambek grammar formalism completely unchanged, and making the
representational assumption that the types are closed sets of strings. We assume
a finite set of primitive types Pr, which we extend to a set of product free types
Tp(/, \) using just the two connectives /, \. We assume that we have a function
v, a valuation, from these types to closed sets of strings, v : Tp(/, \)→ B(L∗),

which is defined on the primitive types and then extended recursively to the
complex types using v(R/T) = v(R)/v(T) and v(R\T) = v(R)\v(T). We assume
that one primitive type S is the start type such that v(S) = L∗.

Since the scl is a residuated lattice, the Lambek calculus is sound. That is
to say, if we have a sequent Γ → X that is derivable in the Lambek calculus then
v(Γ) ⊆ v(X) where we extend v to Tp+ using ◦. We then make a finite lexicon
which is a finite assignment of types to elements of Σ, and we require that it
satisfy the obvious compatibility condition that if a has type T then a ∈ v(T).
This is the condition that is called correctness in [5].

This gives us a Lambek grammar. Note that since the Lambek calculus is
sound, and because of the compatibility condition the type assignment satisfies
we have the following trivial lemma, whose proof we omit.

Lemma 1. L(G) ⊆ L∗.

Example 1. Suppose L∗ = {anbn|n > 0}. The closed sets of strings include
{a}, {b}. We assign type A to {a}, B to {b} and S to L. We then have the
infinite set of derived types A/A, S/B etc. each of which refer to closed sets
of strings. v(A/A) = {λ}, v(S/B) = {ai+1bi|i ≥ 0}, v((S/B)/S) = {a}, and
so on. Since a ∈ v(S/B) and in v((S/B)/S) we assign a the two types S/B
and (S/B)/S and to b we assign the type B. This gives us a Lambek grammar.
Clearly ab ∈ L(G) since S/B,B is a valid type assignment and we can prove
S/B,B → S. Similarly aabb ∈ L(G) through the type assignment (S/B)/S, S/
B,B,B. Indeed L(G) = L∗.

This grammar is adequate in Lambek’s sense – it defines the correct language.
Of course, we needed to manually choose which primitive types we should use.
In this case we only needed to use the ‘natural’ types – namely the closures of
the singleton sets of elements of Σ, A = {a}′′ and B = {b}′′, and the special type
S. These particularly simple types have a fixed valuation in a given language.

Contrast this to the approach taken by Buszkowski in [5]. There we start
with a fixed grammar. For a primitive type T , v(T) is defined to be the set of
strings such that there is a valid type assignment so that we can derive T from
that type assignment. Given this we then extend it to the set of all product free
types. We can then ask whether the type assignment (a, T) satisfies a ∈ v(T).
Here we already have a semantics for the types before we start defining the
grammar, and so it is easy to stipulate this correspondence as a condition.

4 Finite Representations of Closed Sets

In the preceding discussion we simply stipulated what the relevant closed sets
of strings were. This glosses over an important problem – how to identify or
refer to a closed set of strings. In the earlier example we started with some
primitive types which referred to the sets {a}′′ which are just the closed sets
of strings defined by a single element of Σ, and the language itself, L, which
is always a closed set. To avoid confusion, we will use a notational convention

from mathematical logic and use ȧ for the type (symbol in the metalanguage)
to distinguish it from the symbol a ∈ Σ in the object language. We will use
only these ‘natural’ types as our primitive types: one type ȧ for each element a
of Σ and one special type L̇, which refers to L, together with the extra type λ̇,
which denotes the closure of the empty string. In what follows we will eliminate
all other primitive types, as they are in a sense arbitrary, and rely only on these
more basic ones which have a well defined semantics.3 We will also augment our
set of connectives to include not just the two connectives /, \, but also a product
•, and the two lattice operations ∨,∧. Our set of types TpΣ is thus the closure
of these primitive types under the five binary connectives.

Given a language L, we recursively define the value of all types using a
valuation vL, a function from TpΣ → B(L), which is defined in Table 1.

Table 1. Interpretation of the basic types and connectives.

Primitive types Lattice connectives Monoid connectives

vL(ȧ) = {a}′′ vL(R ∨ T) = (vL(R) ∪ vL(T))′′ vL(R • T) = (vL(R) · vL(T))′′

vL(L̇) = L vL(R ∧ T) = vL(R) ∩ vL(T) vL(R/T) = vL(R)/vL(T)

vL(λ̇) = {λ}′′ vL(R\T) = vL(R)\vL(T)

Note that for any term T , vL(T) is a closed set of strings, an element of
B(L).

We are interested in ways that we can use some simple finite expression to
define, or refer to, a closed set of strings in a language. There are two different
strategies we can use to define closed sets of strings. The first, which we call a
primal approach, involves specifying a finite set of strings S; this will define the
closed set S′′. Alternatively, we can pick a finite set of contexts C and use this to
define closed set C ′. Using these two approaches we can express both the primal
and dual approaches using just complex types formed from these ‘natural’ types.
Suppose we have a single string of length n, w = a1 . . . an. We will write ẇ as
an abbreviation for the complex type ẇ = ȧ1 • (ȧ2 . . . ȧn). It is easy to see that
v(ẇ) = {w}′′, and so we can represent the set of strings {w}′′ using types of the
form ẇ. Similarly suppose we have a set of strings X = {u, v}. We can refer to
the closed set of strings X ′′ using the type Ẋ = u̇∨ v̇. Again it is easy to see that
v(Ẋ) = X ′′. Similarly for any finite set of strings X we define the associated term
Ẋ. There are of course many different terms, by associativity of concatenation
and commutativity and associativity of union, which all denote the same closed
set of strings – we assume that we fix some particular one according to some
arbitrary convention.

In the dual situation we will have a finite set of contexts, C which defines
a set of strings C ′. Suppose C = {l�r}; we define Ċ to be the complex type
(l̇\L̇)/ṙ. Suppose u ∈ C ′. This means that lur ∈ L. Suppose l2 ∈ {l}′′ and

3 We do not consider here > and ⊥ as they seem not to be necessary for syntactic
description.

r2 ∈ {r}′′ then l2ur2 ∈ L so u ∈ v(Ċ). Indeed v(Ċ) = C ′. If C has more than
one element, then we will define a term using ∧: If C = {l1�r1, . . . , lk�rk}, we
define Ċ = ((l̇1\L̇)/ṙ1) ∧ . . . ((˙lk\L̇)/ṙk). Again it is straightforward to verify
that v(Ċ) = C ′.

Therefore in order to define closed sets of strings using either the primal
or dual methods, we need only use the basic natural types that refer to the
individual elements of Σ and the language itself. There is no need to use any
additional arbitrary primitive types. This comes at a price – we cannot refer
to all closed sets of strings in all languages using only finite terms of this form.
This restricts the class of languages we can define in this way in a nontrivial way.
Contrast this case with that of congruential languages [11], where the restriction
to congruence classes causes some limitation in descriptive power, but it is easy
to refer to each congruence class (simply by referring to any string in the class).
Here, we lose no descriptive power, but cannot in some cases refer to the relevant
classes of strings using only a finite description.

5 Grammars as sets of equations

Having eliminated all of the arbitrary symbols, we are left only with symbols
that have a clear denotation in our language. We can therefore define statements
using these symbols to say things about the language we are modeling that may
be either true or false.

We have a set of types or terms, using the primitive symbols and the binary
operations, that we call TpΣ . Each term refers to a particular closed set of
strings in a language using the valuation vL.

We then add one relation symbol, equality,
.
=, again using the dot convention

to distinguish this as a symbol in the metalanguage. We will consider equations
of the form R

.
= T for R, T ∈ TpΣ .

Definition 1. An equation R
.
= T is true in the language L, which we write

L |= R
.
= T , iff vL(R) = vL(T)

Note that we can state inequalities using only the symbol
.
= since (T∧R)

.
= R

is true iff vL(T) ⊆ vL(R). We will use S ⊆̇T as a shorthand for such an equation.
Every equality or inequality of this form is either true or false of a particular

language. The statement w ∈ L becomes the equation ẇ ⊆̇ L̇, in the sense that
L |= ẇ ⊆̇ L̇ iff w ∈ L. The statement u ≡L v becomes u̇

.
= v̇. Clearly there are

variety of statements that can be framed in this way, from ones which, for cfgs
are polynomially decidable such as the former, to those like the latter, which
are undecidable for cfgs. The lexicon in a Lambek grammar consists of type
assignments (a, T) where a ∈ Σ and T ∈ TpΣ which in this formalism can be
written as equations of the form ȧ ⊆̇T . We do not restrict ourselves only to this
sort of equation but consider for the moment any kind of equation.

We can therefore view a grammar as a set of equations that are true of the
language, or more strictly true of the syntactic concept lattice of the language.
More formally, let E be a finite set of equation; we say that L |= E iff L |= E

for all E ∈ E . If this is the case then we say that L is a model for E . Note that
there will always be at least one model: the language L = Σ∗ has a trivial scl
with only one element, and so it satisfies all sets of equations.

Example 2. Consider the grammar of Example 1. We have two nontrivial as-
signments of the word a: L̇/B and (L̇/B)/L̇. These two assignments correspond
to the inequalities ȧ⊆̇L̇/ḃ and ȧ⊆̇L̇/ḃ/L̇. These correspond to the statements
{a}′′{b}′′ ⊆ L and {a}′′L{b}′′ ⊆ L, both of which are true for the language in
question.

We can define a semantic notion of entailment: If every language L that
satisfies all of the equations in E also satisfies another equation E then E |= E.
In other words, all models of E are also models of E ∪ {E}. We could define
a language on the basis of this semantic entailment: {w ∈ Σ∗ | E |= ẇ ⊆̇ L̇},
but it is more convenient, we think, to use a syntactic notion of entailment
using a syntactic calculus. We can code the axioms of the residuated lattices
using equations and functions of various arities. We code the primitive types
ȧ, λ̇, L̇ as constant symbols, and have a countable set of variables x, y, z,
For example associativity of the monoid is defined as: x • (y • z) .

= (x • y) • z,
using implicit universal quantification as in equational logic. We assume a finite
equational basis for residuated lattices that we write RL and we write E ` E for
the syntactic notion of entailment under Birkhoff’s equational deductive system
using E and RL. This gives us a slightly different definition that we will now
use.

Definition 2. A finite set of equations E defines a language over Σ, L(E) =
{w ∈ Σ∗ | E ` ẇ ⊆̇ L̇}

This does not entirely coincide with the definition of semantic entailment,
in spite of Birkhoff’s completeness theorem. This is because the notion of se-
mantic entailment restricts the class of models to lattices that are the scls of
languages, whereas the equations that we use to define residuated lattices allow
all residuated lattices.

Many different formalisms can be cast in this light: they all have weak gen-
erative power properly included in the class of conjunctive grammars [19]; a
context sensitive formalism that properly includes the cfgs. The use of terms
with ∧ takes us out of the class of cfls [20].

An advantage of framing things in this way is that grammar construction may
become a computationally tractable problem, because it can be decomposed into
a collection of smaller problems. Each equation is either true or false with respect
to the language being modeled. If a grammar overgenerates then this is because
at least one equation in the grammar is false. The validity of each equation can
be evaluated and tested independently of all others. This means that the learning
algorithm only has to deal with a set of independent, local problems rather than
one single global problem. As a result for these formalisms we can in general
devise computationally efficient learning procedures [21, 22, 11]. However, given
the undecidability of this logic in general, we will need to restrict the sorts of
equations we use in order to exploit this property efficiently.

5.1 Lambek grammars as equations

We will start with Lambek grammars. We assume that all of the primitive types
in the grammar can be defined using equations, as in Section 4, and that the
grammar is adequate. If we assign the type T to a word a in a Lambek grammar,
then this is equivalent to the inequality ȧ⊆̇T . We assume that all of these type
assignments are true. Indeed if we assign to a word a the two types R, T then
this is equivalent to the single type assignment, ȧ ⊆̇R ∧ T since if a ∈ v(T) and
a ∈ v(R) then a ∈ v(R)∩v(T) = v(R∧T)[20]. We can therefore code the lexicon
of a Lambek grammar as a set of equations E , one per element of Σ. We can
then show that the language defined by the Lambek grammar is exactly equal
to L(E). The two sets of derivations though are not entirely the same for reasons
we will explain in the context of cfgs in the next section.

5.2 Context-free grammars

We can also frame context free grammars as a system of equations of this type.
Suppose we have some cfg G in, for simplicity, Chomsky normal form. For a
nonterminal N we can define the corresponding set of strings as the closure of
the set of yields {w|N ∗⇒G w}′′. We assume that for each nonterminal in G,
the corresponding closed set of strings can be expressed as a finite term, which
we will write as Ṅ . So vL(Ṅ) = L(G,N)′′. Clearly S can be represented as
the term L̇. Then we can convert each production of the form N → PQ to an
equation which states that the right hand side is a subset of the left hand side:
Ṗ •Q̇ ⊆̇ Ṅ . Each production of the form N → a is an equation of the form ȧ ⊆̇ Ṅ ,
and an epsilon-production is of the form λ̇ ⊆̇ L̇. Therefore we can define for each
production in the grammar an equation, giving a set of equations EG such that
S
∗⇒G w iff EG ` ẇ ⊆̇ L̇
Note that the derivation process in the grammar is not exactly the same as

the proof with respect to the set of equations. For example, if a nonterminal
N is represented by a dual term, say l̇\L̇/ṙ, and we have a production N → a,
then from ȧ ⊆̇ l̇\L̇/ṙ we can deduce directly using the residuation operations that
l̇• ȧ• ṙ ⊆̇ L̇ i.e. that lar is in the language, even if, for example N is not reachable
in the grammar. This does not affect the set of strings that are generated, since
the equations are all true, and thus we will not overgenerate. Similarly, when
we consider nonterminals that are defined primally, N might correspond to the
closure of the finite set {w1, . . . , wk}. In this case we will have a direct proof
of ẇi ⊆̇ Ṅ , which might not correspond to a cfg derivation. Thus it might be
desirable to restrict the class of derivations available to exclude these ones which
though legal, fail to correspond to proper cfg derivations.

In both the case of cfgs and Lambek grammars, we cannot represent all
context free languages in this way, since there are languages where the closed
sets that we require cannot be defined using only finite terms of the types we
consider here.

5.3 Finite automata

We can however represent all regular languages using finite automata in this
manner, since residual languages are closed sets. Recall that the residual lan-
guages are defined as u−1L = {v|uv ∈ L}, for some u ∈ Σ∗. Consider a deter-
ministic finite automaton with state set Q, initial state q0, transition function
δ and set of final states F ⊆ Q. For each state in q ∈ Q, assuming they are
all reachable, we can find a string wq such that δ(q0, wq) = q; we stipulate that
wq0 = λ.

We can therefore represent a state q by the term ẇq\L̇; under this scheme

the initial state is represented by λ̇\L̇ which will have the same value as L̇.
If there is a transition from state q to state r labelled with a then this can
be represented as the equation: ẇq\L̇⊇̇ȧ • (ẇr\L̇). If a state q is in F this is

represented by the equation ẇq⊆̇L̇ or equivalently λ̇⊆̇ ˙wqf \L̇. It is easy to verify
that if a word w is accepted by the automaton then, if we denote δ(q0, w) = qf ,

then E ` L̇⊇̇ẇ • (˙wqf \L̇), and therefore, given that qf ∈ F that E ` ẇ ⊆̇ L̇ iff the
automaton accepts w.

5.4 Thue systems

We can get some more insight by considering a particularly limited form of
equation. In order to say that a string is in the language, we can use an equation
of the form ẇ ⊆̇ L̇. Clearly if we only have equations of this type, we will not
have anything other than a simple finite list of elements of the language. Let
us add a second type of rule: equations of the form u̇

.
= v̇. This states that

{u}′′ = {v}′′ which implies that u ≡L∗ v. A finite set of equations of this type
is exactly equivalent to a Thue system: the only connective we use is ◦ and the
only relation is equality. Recall that a Thue system T is just a finite set of pairs
of strings, that we will write as u↔ v. For example {ab↔ λ} is a simple Thue
system. This defines a congruence of Σ∗, which we write ≡T , as the symmetric
transitive closure of lur ≡T lvr if u ↔ v is in T . This is clearly a congruence
which is called the Thue congruence defined by T ; one of the simplest and earliest
form of rewriting systems. This is essentially the same as a finite presentation
of a finitely generated monoid: we have a finite set Σ of generators, and a finite
set of equations or relations over Σ. The combination of these two types of rules
gives us a simple way of defining languages: for example the Dyck language can
be defined using the two equations ȧḃ

.
= λ̇ and λ̇ ⊆̇ L̇.

Note that the congruence defined by the system will not in general be exactly
the same as the syntactic congruence of the language defined by the system. If
the system of equations defines the language L then clearly if E ` u̇ .

= v then
u ≡L v, but not necessarily in reverse.

Example 3. Consider E to consist of ȧḃȧḃ
.
= ȧḃ and ȧḃ ⊆̇ L̇. This defines the

language (ab)+ which is regular. This has a syntactic monoid where aa ≡L bb.
But it is not the case that E ` ȧȧ .

= ḃḃ.

5.5 Distributional Lattice Grammars

Distributional lattice grammars (dlgs) are a learnable grammatical formalism
explicitly based on a model of the scl [23]; it is therefore straightforward to
convert them into a set of equations that describe it. For reasons of space we
will not present them in full; one of their advantages is that they can compactly
represent an exponential number of equations using only a polynomial amount
of data. The dlg models a partial lattice that considers only a finite set of
contexts We assume that we have a set of k contexts, F = {l1�r1, . . . , lk�rk},
which include the empty context �. We denote this partial lattice by B(L,F);
which consist only of the finite collection of closed sets of strings defined by
subsets of F , together with a concatenation operation defined by

M ◦N = ((MN)′ ∩ F)′

We can finitely represent this partial lattice using the set of contexts, a
sufficiently large set of substrings K, and some amount of information about L.
In particular we need to know which elements of F �KK are in L. There is a
map f∗ from B(L,F)→ B(L), which embeds the finite collection of closed sets
defined by subsets of F into the full lattice, which satisfies

f∗(M ∧N) = f∗(M) ∧ f∗(N) (3)

f∗(M ◦N) ⊇ f∗(M) ◦ f∗(N) (4)

These equations therefore justify the following conversion of relations in the
finite lattice into statements about the scl. We use subsets of F to define closed
sets of strings; if C ⊆ F is a set of contexts, we use Ċ for the term that we
use to refer to the closed set of strings C ′. We then have the following types of
equations, where X,Y, Z are subsets of F .

ȧ ⊆̇ Ẋ if a ∈ X ′

Ẋ • Ẏ ⊆̇ Ż if X ′Y ′ ⊆ Z ′

Ẋ ∧ Ẏ ⊆̇ Ż if X ′ ∩ Y ′ ⊆ Z ′

The dlg specifies a subset of these equations E and there is a simple cubic
time algorithm for computing for any string w, the maximal set of these con-
texts C such that E ` ẇ ⊆̇ Ċ. Language membership is then determined by the
presence of the empty context �, equivalent to L̇ in the set C.

6 Discontinuity

So far we have considered continuous individual strings and models based on
simple concatenation. There are three related systems: distributional learning
based on the relation between contexts and strings; Lambek calculus and Lambek
grammars which we can view as the logic of these structures, and context free
grammars.

Given the inadequacies of context-free formalisms in general, it is natural to
extend this approach to mildly context sensitive formalisms, which are directly
or indirectly based on modeling discontinuous strings. The formalism most direct
analogous to cfgs is the class of multiple context free grammars [24] (mcfgs) and
we can think of the displacement calculus [1] as its logic. Distributional learning
has also made the same transition [25]. For simplicity, we will just consider the
generalisation to strings with one gap (two components); the generalisation to k
components is straightforward but requires a more elaborate notation.

We define a 2-word to be a pair of strings (an element of Σ∗ ×Σ∗) that we
write (v1, v2). We define a 2-context to be a string with 2 gaps: which we can
write u0�u1�u2. We can combine this with a pair of strings to get a string:
u0�u1�u2 � (v1, v2) = u0v1u1v2u2. Given a particular language, this defines a
relation between 2-contexts and 2-words. We again define the polar maps given
sets of 2-contexts C2 and 2-words S2.

C ′2 = {(v1, v2)|∀f ∈ C2, f � (v1, v2) ∈ L}

S′2 = {f |∀(v1, v2) ∈ S2, f � (v1, v2) ∈ L}

Again we say that a set of 2-words, S2 is closed if S′′2 = S2. The set of all
closed sets of 2-words in a language forms a lattice, which we call B2(L). These
closed sets have an interesting structure, and are closely related, as one would
expect, to the elements of B(L), which we will now write B1(L). Indeed suppose
X2 is a closed set of 2-words (an element of B2(L)). Suppose X2 ⊇ Y1 × Z1,
for sets of strings Y1, Z1, then X2 ⊇ Y ′′1 × Z ′′1 ; in other words we can write
any element of B2(L) as

⋃
i Y

i
1 × Zi1, as a union of products of the order-1

lattice. Therefore there is a natural map from B(L)×B(L) to B2(L) given by
h(X,Y) = (X × Y)′′. Indeed we can consider these elements to define a relation
between two closed sets of strings: it may be the case that an element of B2(L)
is equal to X × Y for some X,Y ∈ B1(L), in which case the relation is trivial
and there is no gain in using the order 2 lattice. In the interesting cases of
non-context-free languages, this relation in general will be infinite in the sense
that it can only be defined as an infinite union of products. In linguistically
interesting cases this relation will often correspond to the relation between a
displaced constituent (e.g. a wh-phrase in English) and the constituent that it
has been displaced out of.

We can define a number of concatenation operations, and their associated
residuals. For two 2-words, there are a number of ways that they can be con-
catenated to form another 2-word or a word. For example, (u1, v1) and (u2, v2)
could be combined to form (u1u2, v1, v2), (u1, u2v1v2), (u1u2, v2v1) and many
others. For brevity we will only consider some of these. Given sets of 2-words
X2, Y2, we can define a family of concatenation operations of which we just
show two: X2 ⊕ Y2 = {(u1u2, v1v2)|(u1, v1) ∈ X2, (u2, v2) ∈ Y2}′′, X2 	 Y2 =
{(u1u2, v2v1)|(u1, v1) ∈ X2, (u2, v2) ∈ Y2}′′. We have taken the closure of the re-
sulting set of multiwords, giving in these cases associative binary operations on
B2(L). The operation 	 corresponds to the mcfg production Z(u1v1, v2, u2) :=
X(u1, u2), Y (v1, v2) in Horn clause notation. Indeed {(λ, λ)}′′ is a left and right

identity for both operations. Unsurprisingly we can again define the left and right
residuals of the operations which will give us some more residuated structures.

These operations are

X2/	Y2 = {(v1, v2) | ∀(u1, u2) ∈ Y2(v1u1, u2v2) ∈ X2} (5)

Y2\	X2 = {(v1, v2) | ∀(u1, u2) ∈ Y2(u1v1, v2u2) ∈ X2} (6)

The sets defined here are closed, and satisfy the equations X2 	 Y2 ⊆ Z2 iff
X2 ⊆ Z2/	Y2 iff Y2 ⊆ X2\	Z2.

At this level of the hierarchy again we have the same metatheoretical issues.
We can represent the tuples of strings directly using a mcfg; the same arguments
that we used in the case of cfgs suggest that the nonterminals of dimension 2
should represent closed sets of 2-words. We can view the logic, in this case Mor-
rill’s discontinuous calculus, as the equational theory of this algebraic structure.
Finally, these can be learned using an extension of the distributional techniques
we discussed earlier [25, 26] .

7 Discussion

The standard model theory for the Lambek calculus uses free models of various
types. In particular we have the standard models: the free semigroup models
2Σ

+

(or 2Σ
∗

if we allow empty antecedents). It is easy to verify that the Lambek
calculus is sound with respect to these free models, and it can also be proved to
be complete [2]. Morrill [1] says:

Since language in time appears to satisfy the cancellation laws, the
free semigroup models appear to be the most ontologically committed
and therefore scientifically incisive models.

The cancellation laws are of the form u • v = u • w implies v = w. Clearly
if equality here just means equality of strings, then this law is true, since the
strings are part of a free semigroup. But if = refers to linguistic/distributional
equality, then this is not true: for example, words can be ambiguous in isolation
and unambiguous in context. “the can” might be distributionally identical to
“the jug” but “can” and “jug” are very different.

Lambek’s stipulation that the algebraic structures must be free is thus, from
our point of view partially correct. The strings are generated freely giving us the
free monoid Σ∗; but the subsets of these are not – we do not have the free join
semilattice but only the lattice of closed sets.

7.1 Proof theory

In general the relation of syntactic entailment is undecidable. Post [27] showed
that in general determining whether x ≡T y is undecidable with respect to a
Thue system. Nonetheless there are subclasses of these sets of equations which
have inference procedures that are efficient for certain classes of conclusions.

Recall that in order to parse, we are only interested in proving equations of the
form ẇ⊆̇L̇.

Lexicalisation is one solution. By requiring all the equations to be of the form
ȧ⊆̇T , we can reduce the problem to one which is decidable since it is, approxi-
mately, the equational theory of residuated lattices. This solves that part of the
problem. But this is only one solution. For suitable other classes of equations
the required proofs can be solved efficiently: indeed in polynomial time, rather
than the NP-hardness of the Lambek calculus.

7.2 Conclusion

The main claim of this paper is that since languages have an intrinsic residuated
lattice structure, grammatical formalisms that use residuated lattices, such as
Lambek grammars should be based on this structure. The crucial consequence
of this is that we can then learn these grammars efficiently under various differ-
ent learning paradigms. We deviate in two important respects from Lambek’s
metaprogram – we abandon the free models, and we may abandon lexicalisation.
Lambek says:

If we take such a program seriously we are not allowed to state a rule
such as Ns ⊆ S/(N\S) which although plausible4 is neither listed in the
dictionary nor derivable from general principles. . . .

We might say that we are not concerned with rules that are ‘plausible’, but
rather with rules that are true or correct in a given language. If they are true,
and we can reason efficiently with them using a sound logical calculus, and in
addition learn them, then there seems little reason to forbid them.

Pereira [28] in his review of Morrill’s 1994 book on logical grammar says:

Types and allowed type inferences are not arbitrary formal machinery
but instead reflect precisely the combinatory possibilities of the under-
lying prosodic algebra.

Here our prosodic algebra is much simpler than the one Pereira is discussing, but
the observation is very apt. Grammars are theories and languages (or algebras
associated with them) are models. Substructural logics can be viewed as the
equational theories of certain types of lattices; logical grammars then can be
viewed as theories of syntactic concept lattices. We can view this as a principled
misinterpretation of Chomsky’s dictum [29],

A grammar of the language L is essentially a theory of L.

Of course, Chomsky meant a scientific theory. We, in contrast, propose viewing a
grammar as a finite set of equations whose deductive closure defines the language:
as a logical theory in other words.

This reduces the arbitrariness of grammars – there is a single specific alge-
braic object that we are trying to model, be it the syntactic concept lattice, the

4 Ns here refers to a mass noun like ‘water’.

syntactic monoid, or some multisorted algebra of discontinuous strings as in Sec-
tion 6. Many different formalisms can be framed in this way, that depend on the
type of algebra that we are modeling. For suitable restricted sets of equations
we can perform the relevant inferences efficiently.

Learnability has always been a central concern of modern linguistics, and
the uniformity of the syntax semantics interface as conceived in the categorial
grammar tradition is very appealing from this perspective. As Pereira says:

. . . uniformity must also go backwards, if the use and meaning of a
sign is to be induced from its appearance with other signs of appropriate
type.

By basing the logic on a well defined observable structure, we can learn the
use cleanly; and perhaps ultimately the meaning as well.

Acknowledgments

I am grateful to Glynn Morrill, Shalom Lappin, Hans Leiss, Ryo Yoshinaka,
Zhaohui Luo and Robin Adams for helpful discussions. Any errors are of course
my own.

References

1. Morrill, G.: Categorial grammar: Logical syntax, semantics and processing. Oxford
University Press (2011)

2. Pentus, M.: Models for the Lambek calculus. Annals of Pure and Applied Logic
75(1–2) (1995) 179–213

3. Lambek, J.: The mathematics of sentence structure. American Mathematical
Monthly 65(3) (1958) 154–170

4. Lambek, J.: Categorial and categorical grammars. In Oehrle, R.T., Bach, E.,
Wheeler, D., eds.: Categorial grammars and natural language structures. Vol-
ume 32. D. Reidel (1988) 297–317

5. Buszkowski, W.: Compatibility of a categorial grammar with an associated cate-
gory system. Mathematical Logic Quarterly 28(14-18) (1982) 229–238

6. Buszkowski, W., Penn, G.: Categorial grammars determined from linguistic data
by unification. Studia Logica 49(4) (1990) 431–454

7. Kanazawa, M.: Learnable classes of categorial grammars. PhD thesis, Stanford
University (1994)

8. Angluin, D.: Inference of reversible languages. Journal of the ACM 29(3) (1982)
741–765

9. Angluin, D.: Learning regular sets from queries and counterexamples. Information
and Computation 75(2) (1987) 87–106

10. de la Higuera, C.: Grammatical inference: learning automata and grammars. Cam-
bridge University Press (2010)

11. Clark, A.: Distributional learning of some context-free languages with a minimally
adequate teacher. In Sempere, J., Garcia, P., eds.: Grammatical Inference: Theo-
retical Results and Applications. Proceedings of the International Colloquium on
Grammatical Inference. Springer (September 2010) 24–37

12. Shirakawa, H., Yokomori, T.: Polynomial-time MAT Learning of C-Deterministic
Context-free Grammars. Transactions of the information processing society of
Japan 34 (1993) 380–390

13. Clark, A.: A learnable representation for syntax using residuated lattices. In:
Proceedings of the 14th Conference on Formal Grammar, Bordeaux, France (2009)

14. Clark, A.: Learning context free grammars with the syntactic concept lattice. In
Sempere, J., Garcia, P., eds.: Grammatical Inference: Theoretical Results and Ap-
plications. Proceedings of the International Colloquium on Grammatical Inference.
Springer (2010) 38–51

15. Yoshinaka, R.: Towards dual approaches for learning context-free grammars based
on syntactic concept lattices. In: Developments in Language Theory. (2011) 429–
440

16. Yoshinaka, R.: Integration of the dual approaches in the distributional learning of
context-free grammars. In: LATA. (2012) 538–550

17. Galatos, N., Jipsen, P., Kowalski, T., Ono, H.: Residuated lattices: an algebraic
glimpse at substructural logics. Elsevier (2007)

18. Costa Florêncio, C.: Learning categorial grammars. PhD thesis, Utrecht University
(2003)

19. Okhotin, A.: Conjunctive grammars. Journal of Automata, Languages and Com-
binatorics 6(4) (2001) 519–535

20. Kanazawa, M.: The Lambek calculus enriched with additional connectives. Journal
of Logic, Language and Information 1(2) (1992) 141–171

21. Angluin, D.: Learning regular sets from queries and counterexamples. Information
and Computation 75(2) (1987) 87–106

22. Clark, A.: Towards general algorithms for grammatical inference. In: Proceedings
of ALT. Springer, Canberra, Australia (October 2010) 11–30 Invited Paper.

23. Clark, A.: Efficient, correct, unsupervised learning of context-sensitive languages.
In: Proceedings of the Fourteenth Conference on Computational Natural Language
Learning, Uppsala, Sweden, Association for Computational Linguistics (July 2010)
28–37

24. Seki, H., Matsumura, T., Fujii, M., Kasami, T.: On multiple context-free grammars.
Theoretical Computer Science 88(2) (1991) 229

25. Yoshinaka, R.: Efficient learning of multiple context-free languages with multi-
dimensional substitutability from positive data. Theoretical Computer Science
412(19) (2011) 1821 – 1831

26. Yoshinaka, R., Clark, A.: Polynomial time learning of some multiple context-
free languages with a minimally adequate teacher. In: Proceedings of the 15th
Conference on Formal Grammar, Copenhagen, Denmark (2010)

27. Post, E.: Recursive unsolvability of a problem of Thue. The Journal of Symbolic
Logic 12(1) (1947) 1–11

28. Pereira, F.: Review of Type logical grammar: categorial logic of signs by Glyn
Morrill. Computational Linguistics 23(4) (1997) 629–635

29. Chomsky, N.: Syntactic Structures. Mouton (1957)

