
An algebraic approach to Multiple Context-Free
Grammars

Alexander Clark1 and Ryo Yoshinaka2

1 Department of Philosophy, King’s College London
alexander.clark@kcl.ac.uk

2 Graduate School of Informatics, Kyoto University
ry@i.kyoto-u.ac.jp

Abstract. We define an algebraic structure, Paired Complete Idempo-
tent Semirings (pcis), which are appropriate for defining a denotational
semantics for multiple context-free grammars of dimension 2 (2-mcfg).
We demonstrate that homomorphisms of this structure will induce well-
behaved morphisms of the grammar, and generalize the syntactic concept
lattice from context-free grammars to the 2-mcfg case. We show that this
lattice is the unique minimal structure that will interpret the grammar
faithfully and that therefore 2-mcfgs without mergeable nonterminals
will have nonterminals that correspond to elements of this structure.

1 Introduction

Denotational semantics3 have been provided before for mcfgs and indeed for
richer formalisms [6, 7] but they have never specified precisely what the oper-
ations or algebraic structures that provide are. When defining denotational se-
mantics for cfgs [5] this is well known: the appropriate structure is a complete
idempotent semiring (cis) [4]. Recently it has been shown [2] that homomor-
phisms of this structure induce nice grammar morphisms and that there is a
unique smallest structure that interprets the cfg faithfully. As a result, cfgs
without mergeable nonterminals will have nonterminals that correspond to el-
ements of this structure. This structure, the Syntactic Concept Lattice, is also
very important from the perspective of grammatical inference, as it gives rise to
a number of algorithms for learning grammars using distributional techniques
[1, 12]. It consists of the collection of all sets of strings that are distributionally
definable with respect to the language in question.

Given the central importance of mildly context-sensitive grammars in math-
ematical linguistics, it is clearly desirable to extend these techniques beyond the
class of cfgs; here we take the next step to the class of 2-mcfgs. For a 2-mcfg,
unsurprisingly, we need a richer structure than a cis; which we define in this pa-
per, and which we call a Paired Complete Idempotent Semiring (pcis). We add
a tupling operation and some nontrivial additional axioms. We then define the

3 Here we refer to the semantics of the meta-grammar rather than the meanings of
natural language sentences [8].

natural extension of the Syntactic Concept Lattice, which we call the Syntactic
Concept Lattice of order 2, which consists of all distributionally definable sets of
strings and sets of pairs of strings, where the notion of distribution is extended
appropriately to account for the richer set of derivation contexts in a 2-mcfg.
As a result we can show that every grammar without mergeable nonterminals
for a language defined by a 2-mcfg will have nonterminals that correspond to
the elements of this concept lattice.

A brief roadmap for the paper: we start (Section 2) by defining mcfgs and
morphisms of these grammars in a fairly standard way. These grammars use a
certain (infinite) family of linear regular functions. We then define in Section 3
the algebraic structures, Paired Complete Idempotent Semirings (pcis) that we
use to interpret these grammars, and show (Section 4) how can define the relevant
linear regular functions in this structure. At this point we also define the standard
Ginsburg and Rice-style fixed point semantics for 2-mcfgs. The generalization
of the syntactic concept lattice is then defined in Section 5. At this point we
can unify these two rather independent strands by showing that pcis-homo-
morphisms induce well-behaved mcfg-morphisms, and that in particular the
homomorphism into the syntactic concept lattice gives a grammar morphism
that does not increase the language (Section 6). Moreover we show that it is the
unique up to isomorphism simplest structure with this property.

2 Definitions

We assume a fixed nonempty finite set as an alphabet, Σ, and we write Σ∗ for
the set of finite strings over Σ, and λ for the empty string. We write P(X) for
the power set of a set X. A language is a subset of Σ∗. Given two languages
A,B we define A ·B to be the standard concatenation of languages, and A×B
to be the Cartesian product.

We recall the definition of a complete idempotent semiring (cis), which is a
tuple

〈M, ◦,∨, ε,⊥〉

where M is a set, ε,⊥ ∈ M , ◦ is a binary operation such that 〈M, ◦, ε〉 is a
monoid, ∨ is an commutative idempotent operation with ⊥ as identity, together
with the infinitary variant of ∨ and so where 〈M,∨,⊥〉 is a complete semilattice
with zero. Moreover we require that x ◦⊥ = ⊥ = ⊥◦ x for all x ∈M and that ◦
distributes left and right over ∨ so that for any Y ⊆M , x◦

∨
Y =

∨
{x◦y | y ∈ Y }

and
∨
Y ◦ x =

∨
{y ◦ x | y ∈ Y }.

Given the ∨ operation we can naturally define a partial order ≤ by x ≤ y iff
y = x ∨ y.

The free cis over a finite set Σ is defined to be

〈P(Σ∗), ·,∪, {λ}, ∅〉

which we can easily verify to be a cis. These provide the standard denotational
semantics for cfgs [5, 4].

For reasons of space, we assume that the reader is familiar with the mcfg
formalism [10]. We denote an mcfg by G = 〈Σ,V, S, P 〉, where Σ is the set of
terminal symbols, V is the set of nonterminal symbols, S is the start symbol and
P is the set of production rules. Each nonterminal in V is assigned a positive
integer called dimension and we let Vd be the set of nonterminals of dimension
d. We write dim(N) = d if N ∈ Vd. Each nonterminal of dimension k derives
k-tuples of strings. The start symbol S has dimension 1, so it generates usual
strings. There are different ways to describe rules of P .

For example, the rules of a grammar G = 〈Σ,V, S, P 〉 can be described as

S(z1,1z2,1z1,2z2,2) :−N(z1,1, z1,2),M(z2,1, z2,2) ; N(a, c) ; M(b, d) ;

N(z1,1a, z1,2c) :−N(z1,1, z1,2) ; M(z1,1b, z1,2d) :−M(z1,1, z1,2) ,

where each zi,j is a variable representing the jth element of the ith argument.
In the above example, N(a, c) ∈ P means that N generates a pair (a, c). The
rule S(z1,1z2,1z1,2z2,2) :−N(z1,1, z1,2),M(z2,1, z2,2) means that if N generates a
pair (z1,1, z1,2) and M generates (z2,1, z2,2) then S generates the string of the
form z1,1z2,1z1,2z2,2 by concatenating these strings. This grammar generates the
language { ambncmdn | m,n ≥ 1 }. In general, a rule has the following form:

N0(α1, . . . , αd0) :−N1(z1,1, . . . , z1,d1), . . . , Nm(zm,1, . . . , zm,dm)

where dim(Ni) = di for i = 0, . . . ,m and αk ∈ (Σ ∪ { zi,j | 1 ≤ i ≤ m, 1 ≤ j ≤
di })∗ for k = 1, . . . , d0 such that no variable zi,j occurs in α1 . . . αd0 twice or
more.

Alternatively, the above rules can be written using linear functions:

S → f(N,M), N → 〈a, c〉, M → 〈b, d〉, N → g(N), M → h(M),

where f, g, h are linear functions satisfying that for any ui,j ∈ Σ∗

f(〈u1,1, u1,2〉, 〈u2,1, u2,2〉) = u1,1u2,1u1,2u2,2 ,

g(〈u1,1, u1,2〉) = 〈u1,1a, u1,2c〉 , h(〈u1,1, u1,2〉) = 〈u1,1b, u1,2d〉 .

We often identify a linear function and its specification as a tuple of strings of
terminals and variables. In the above examples, g is identified with 〈z1,1a, z1,2c〉.

We write the set of dim(N)-tuples of strings generated by a nonterminal
N of G by L(G,N) ⊆ (Σ∗)dim(N), which is recursively defined as follow: if a
rule N0 → f(N1, . . . , Nm) is in P and ui ∈ L(G,Ni) for i = 1, . . . ,m, then
f(u1, . . . ,um) ∈ L(G,N0). The language of G is L(G) = L(G,S).

A linear function uses each element of arguments at most once. We say that
a linear function is regular or non-deleting if every argument appears as a part
of the output. Moreover a linear regular function is non-permuting if zi,j+1 never
occurs left to zi,j in its specification.

In this paper, we assume that all linear functions are non-deleting and non-
permuting and moreover those functions introduce terminal symbols only when
the arity is 0, so their specifications are either variable-free or terminal-free. It

is known that those restrictions on linear functions do not affect the generative
power of the mcfg formalism. In addition, we concern ourselves here with mcfgs
whose nonterminals have dimension at most 2, i.e, V = V1 ∪ V2. We define this
class of grammars as 2-mcfg.

3 Paired Complete Idempotent Semirings

We use a multi-sorted algebra which has two types of elements: roughly sets of
strings (sort 1) and sets of pairs of strings (sort 2).

Definition 1. A Paired Complete Idempotent Semiring (pcis) is a tuple

〈A1, A2, ◦,⊗,∨1,∨2, ε,⊥〉

where A1, A2 are two disjoint4 sets, and ε,⊥ ∈ A1. We call these the sets of
elements of sort 1 and sort 2 respectively. We also have operations defined on el-
ements of various sorts, ∨1,∨2 which are commutative and idempotent, together
with their infinitary variants,

∨1
,
∨2

, a binary concatenation operation ◦ on A1,
and a pairing operation that constructs elements of sort 2 from two elements of
sort 1, ⊗. We will often drop the sortal superscripts on ∨ as they are clear from
the context and overload the symbol ∨ or

∨
.

These satisfy the following axioms:

– 〈A1, ◦,∨1, ε,⊥〉 is a cis;
– 〈A2,∨2,⊥⊗⊥〉 is a complete join semi-lattice with bottom element;
– ∨1 and ∨2 distribute over ⊗ that is to say we have the following identities:
• (x ∨1 y)⊗ z = (x⊗ z) ∨2 (y ⊗ z) and (

∨
i xi)⊗ y =

∨
i(xi ⊗ y) ,

• x⊗ (y ∨1 z) = (x⊗ y) ∨2 (x⊗ z) and x⊗ (
∨
i yi) =

∨
i(x⊗ yi) .

We define partial orders on the two sorts, x ≤1 y iff y = x ∨1 y, x ≤2 y iff y =
x∨2 y. Note that ⊥1 is a minimal element with respect to ≤1 and ⊥2 = ⊥1⊗⊥1

with respect to ≤2.

Axiom E: For all x ∈ A2,

x =

2∨
{u⊗ v | u, v ∈ A1, u⊗ v ≤2 x} .

Axiom V: For any set J ⊆ A1 ×A1, and any p, q, a, b, c, d ∈ A1 if

p⊗ q ≤2

∨
{u⊗ v | (u, v) ∈ J}

then
p ◦ q ≤1

∨
{u ◦ v | (u, v) ∈ J}

and

(a ◦ p ◦ b)⊗ (c ◦ q ◦ d) ≤2

∨
{(a ◦ u ◦ b)⊗ (c ◦ v ◦ d) | (u, v) ∈ J} .

4 We allow a slight violation of this criterion later as the empty set may be a member
of both sets. This can be resolved with some technical modifications or notational
variant.

Axioms E and V require some explanation. Axiom E excludes the case where
there may be elements of sort 2 that are not formed from elements of sort 1.
Axiom V can best be thought of as a generalization of the other distributivity
axioms. From the cis axioms we have that ◦ distributes over ∨1. From Axiom V
we can show that the general family of intercalation operations that we use in
mcfg derivations distribute over ∨1 and ∨2 using the two clauses of the axiom
respectively.

We use repeatedly the convention that d is a variable ranging over 1 and 2,
which allows us to state conditions that both sorts satisfy. If A is a pcis, then
we write Ad for the set of elements of sort d, ⊥A or ⊥1 for the bottom element
of A1 and εA for the ◦-identity.

The most basic type of pcis which will help to understand the definition is
the free structure over a finite set which will be very familiar.

Definition 2. Given a finite set Σ we define the free structure F(Σ) to be the
structure:

〈P(Σ∗),P(Σ∗ ×Σ∗), ·,×,∪,∪, {λ}, ∅〉

The elements of sort 1 are just sets of strings, the elements of sort 2 are sets of
pairs of strings, the pairing operation is the cartesian product and so on.

We define homomorphisms standardly.

Definition 3. Given two pciss A and B, a pcis-homomorphism h is a pair of
functions h1 : A1 → B1 and h2 : A2 → B2 such that:

– h1(⊥A) = ⊥B
– h1(εA) = εB
– For all u, v ∈ A1, h1(u ◦ v) = h1(u) ◦ h1(v)
– For all u, v ∈ A1, h2(u⊗ v) = h1(u)⊗ h1(v)

– For all X ⊆ Ad, hd(
∨d

X) =
∨d{hd(x) | x ∈ X}

Definition 4. Suppose we have a pcis-homomorphism h : A → B; we define
h∗ : B → A as a pair of functions h∗d : Bd → Ad with d = 1, 2, where for all
y ∈ Bd we define

h∗d(y) =

d∨
{x ∈ Ad | hd(x) ≤ y} .

This function h∗ is called the residual of the map h, which is a weak sort of
inverse.

4 Algebraic Semantics for MCFGs

The pcis only has the single concatenation operation ◦, but we can define linear
regular functions in a natural way. We will illustrate this with a simple example.
Consider the mcfg production

N(z1,1z2,1, z2,2z1,2) :− P (z1,1, z1,2), Q(z2,1, z2,2)

which uses the linear regular function

f((z1,1, z1,2), (z2,1, z2,2)) = (z1,1z2,1, z2,2z1,2) .

We can extend these functions naturally from strings into a pcis.

Definition 5. For all x, y ∈ A2 we define x	 y to be

x	 y =
∨
{(z1,1 ◦ z2,1)⊗ (z2,2 ◦ z1,2) | (z1,1 ⊗ z1,2) ≤ x, (z2,1 ⊗ z2,2) ≤ y}

where the z variables range over elements of A1. This defines a binary operation
on A2.

Here we implicitly rely on Axiom E; we apply the linear regular function to
all of the sort 1 components of x and y, and then combine the results with

∨
.

Crucially, these operations, given the axioms of the pcis, are “homomorphic”.

Lemma 1. If h is a pcis-homomorphism then h(x	 y) = h(x)	 h(y).

Proof. (Sketch) It is immediate from the definitions that h(x	y) ≤ h(x)	h(y).
Now h(x) 	 h(y) =

∨
Z where Z = {(z1,1 ◦ z2,1) ⊗ (z2,2 ◦ z1,2) | (z1,1 ⊗ z1,2) ≤

h(x), (z2,1⊗ z2,2) ≤ h(y)}. Using Axiom V we can show that every element of Z
is bounded by h(x	 y), which gives the result. ut

In a similar way we can define for any linear regular function f , a corre-
sponding operation on a pcis. These operations coincide in the trivial cases with
primitive operations: for example, if f is the function f(z1,1, z2,1) = z1,1z2,1, then
f(x, y) = x ◦ y. Additionally we can prove that they are homomorphic.

Lemma 2. If h is a pcis-homomorphism and f is a k-ary linear regular func-
tion, with k > 0, then:

h(f(x1, . . . ,xk)) = f(h(x1), . . . , h(xk)).

For reasons of space we omit the full proofs; but the proofs require that the
functions be non-deleting and non-permuting and require Axioms E and V in
the definition of the pcis. In the case where k = 0 and f is variable free this
property is trivial.

We can now define the least fixed point semantics of a 2-mcfg in a non-
standard way: rather than defining them directly in F(Σ) which would be com-
pletely standard, we will define them in an arbitrary pcis.

Definition 6. Suppose we have an mcfg G with nonterminals V and a pcis
A. Let ΞVA be the set of all functions from nonterminals to elements of A; where
nonterminals of dimension d are mapped to elements of Ad. We define

∨
and

≤ componentwise on ΞVA .
In particular we define ξ⊥ by ξ⊥(N) = ⊥dim(N), for all N ∈ V .

Let h be a homomorphism from F(Σ) to A. Each production π ∈ P in the
grammar then defines a function Φhπ from ΞVA → ΞVA . If π is the k-ary production
(k > 0)

N0 → f(N1, . . . , Nk)

then Φhπ(ξ) = ξ′ is the element of ΞVA which assigns ⊥d to all nonterminals that
are not N0, and to the element N0 assigns f(ξ(N1), . . . , ξ(Nk)).

ξ′(N) =

{
f(ξ(N1), . . . , ξ(Nk)) if N = N0,

⊥dim(N) otherwise.

If k = 0 and π is of the form N0 → w, where w ∈ (Σ∗)dim(N0), then we use
the homomorphism h to define ξ′ to be

ξ′(N) =

{
hdim(N)({w}) if N = N0,

⊥dim(N) otherwise.

Definition 7. For a grammar G, with set of productions P we define a function
ΦhG from ΞVA to ΞVA .

ΦhG(ξ) =
∨
{Φhπ(ξ) | π ∈ P }

We define recursively Φh,nG (ξ) = ΦhG(Φh,n−1G (ξ)). By Kleene’s fixed point theo-

rem, the least fixed point, ξhG, of this function exists and is equal to
∨
n Φ

h,n
G (ξ⊥).

This least fixed point coincides with the standard derivational semantics of
mcfgs when the homomorphism h is the identity: for every nonterminal N ,
L(G,N) = ξG(N). On its own, this result is not very surprising: we have merely
defined the derivation process in another way, as has been done before [6] and
derived the same result. In order to say something interesting we need to use
the homomorphism.

Lemma 3. Suppose we have a homomorphism h from F(Σ) to some pcis A.
Then write ΦhG for the interpretation function in A with h. Then for any ξ ∈
ΞVF(Σ)

h(ΦιG(ξ)) = ΦhG(h(ξ)) ,

where ι is the identity.

The proof is immediate given Lemma 2.

5 The Syntactic Concept Lattice

We now extend the syntactic concept lattice [2], from the structure appropriate
to cfgs which is a cis, to the structure appropriate for 2-mcfgs which is a pcis.

We fix a language L over Σ. We have a distinguished symbol � 6∈ Σ. A
2-word is an ordered pair of strings (u, v), an element of Σ∗×Σ∗. A 1-context is
a string in Σ∗�Σ∗ and a 2-context is a string in Σ∗�Σ∗�Σ∗. See for example
[11].

We can combine a d-context and a d-word using the wrap operation �. This
is defined as l�r�u = lur and l�m�r� (u, v) = lumvr. We extend this to sets
of d-words and d-contexts in the usual way.

Definition 8. We define polar maps: we will use (·). for the maps from sets of
d-words to sets of d-contexts and (·)/ for the maps from sets of d-contexts to sets
of d-words

Given a set of 1-words x (x ∈ P(Σ∗)) define

x. = {l�r ∈ Σ∗�Σ∗ | l�r � x ⊆ L} .

Given a set of 2-words x define

x. = {l�m�r ∈ Σ∗�Σ∗�Σ∗ | l�m�r � x ⊆ L} .

Given a set of 1-contexts t we define

t/ = {u ∈ Σ∗ | t� u ⊆ L} .

Given a set of 2-contexts t we define

t/ = {(u, v) ∈ Σ∗ ×Σ∗ | t� (u, v) ⊆ L} .

This gives a pair of Galois connections, which as is well known give rise to a
lattice [3]. We are interested in the closed sets of d-words, which are those sets
x such that x = x./. These sets naturally form a pcis.

Definition 9. The syntactic concept lattice of order 2 of the language L, written
B(L) is the following structure.

– A1 = B1(L) = {x ∈ P(Σ∗) | x = x./ }
– A2 = B2(L) = {x ∈ P(Σ∗ ×Σ∗) | x = x./ }
– ε = {λ}./ and ⊥ = ∅./ (in sort 1).
– For x, y ∈ A1, x ◦ y = (x · y)./ and x⊗ y = (x× y)./

– For X ⊆ Ad,
∨
dX = (

⋃
X)./

Lemma 4. B(L) is a pcis and the map from F(Σ) given by x → x./ is a
pcis-homomorphism.

Proof. (Sketch) Suppose x, y ∈ P(Σ∗). Observe that (x · y)./ = (x./ · y./)./,
and (x× y)./ = (x./ × y./)./.

Moreover if X ⊆ P(Σ∗) then (
⋃
X)./ = (

⋃
{x./ | x ∈ X})./. ut

Note that this will be finite, by an application of the Myhill-Nerode theorem,
if and only if the language L is regular. It is easy to see that if L = Σ∗, then
B(L) is isomorphic to 1; and the only elements are Σ∗ and Σ∗ ×Σ∗.

Example 1. L = a∗b∗. This is regular and thus B(L) is finite. Then B1(L) =
{∅, Σ∗, {λ}, a∗, b∗, a∗b∗} and B2(L) = {∅, Σ∗ × Σ∗, {〈λ, λ〉}, a∗ × {λ}, {λ} ×
b∗, a∗ × b∗, a∗ × a∗, b∗ × b∗, a∗ × a∗b∗, a∗b∗ × b∗}. Figure 1 contains a diagram
showing these lattices.

Σ∗

a∗b∗

a∗ b∗

{λ}

∅

Σ∗ ×Σ∗

(a∗ × a∗b∗) ∪ (a∗b∗ × b∗)

∅

{λ} × {λ}

a∗ × {λ} {λ} × b∗

a∗ × a∗ a∗ × b∗ b∗ × b∗

a∗ × a∗b∗ a∗b∗ × b∗

Fig. 1. The syntactic concept lattice of order 2 for the regular language L = a∗b∗; on
the left is a Hasse diagram for B1(L), and on the right for B2(L).

Example 2. Suppose L = { ambncmdn | m,n ≥ 1 }. Since this language is not
regular B(L) has an infinite number of elements. Sort 1 contains L, Σ∗, ∅,
{λ}, as well as {anbcn | n ≥ 1}, {anbbcn | n ≥ 1}, and many others such as
{ambi+jcmdi | m ≥ 1}.

Sort 2 is more complex and contains the infinite sets {(am, cm) | m ≥ 1},
{(am+k, cm) | m ≥ 1}, {(am, cm+k) | m ≥ 1} for all k ≥ 1, and so on, as well
as {(bm+k, dm) | m ≥ 1} and so on. Note that B(L) has only countably many
elements though F(Σ) is uncountable.

Example 3. Recently Salvati [9] showed that

MIX = {u ∈ {a, b, c}∗ | |u|a = |u|b = |u|c } ,

where |u|a denotes the number of occurrences of a in u, is a 2-mcfl. Sort 1
(B1(MIX)) consists of the sets xi,j = {u | |u|a − |u|b = i and |u|a − |u|c = j }
for all (i, j) ∈ Z × Z. Sort 2 (B2(MIX)) consists of the sets yi,j = { (u, v) |
|uv|a − |uv|b = i and |uv|a − |uv|c = j } for all (i, j) ∈ Z× Z.

6 Homomorphisms and Grammar Morphisms

We will take a standard notion of grammar morphism as applied to mcfgs.
Given a function φ from the set of nonterminals Vd to two disjoint sets Xd, we
define the image of the grammar G, written φ(G). We extend φ to a function on
productions, mapping

φ(N0 → f(N1, . . . , Nk)) = φ(N0)→ f(φ(N1), . . . , φ(Nk))

and φ(N0 → w) = φ(N0)→ w. Then φ(〈Σ,V, S, P 〉) = 〈Σ,φ(V), φ(S), φ(P)〉.
If φ is injective then the G is isomorphic to φ(G). If not, then two nontermi-

nals must have been merged; it is easy to see that in any event L(G) ⊆ L(φ(G)).

Definition 10. If L(G) = L(φ(G)) then φ is an exact morphism.

If we have two distinct nonterminals M,N that are merged by an exact
morphism φ, (i.e. φ(M) = φ(N)), then φ(G) is strictly smaller than G yet defines
the same language. In this case we say that G has mergeable nonterminals.
Requiring that a grammar does not have mergeable nonterminals is a very weak
and natural condition on the grammars that we might want to use in practice
or output from a learning algorithm.

Now we come to a crucial point: homomorphisms from F(Σ) to some other
pcis induce an mcfg-morphism.

Definition 11. Suppose A is a pcis and h a pcis-homomorphism from F(Σ)
to A. Then define φh to be a function from V → A defined by

φh(N) = h(L(G,N)) .

This morphism will merge two nonterminals iff their languages are mapped
to the same element of A by h. Thus we can merge elements algebraically. As a
special case of this morphism, we have the case where h is the identity. In this
case, it merges two nonterminals of dimension d only if they generate exactly the
same set of d-words. Clearly in this case the language generated by the grammar
will be unchanged.

Given that the derivation operations of the grammar are homomorphic with
respect to the algebra we can prove the following theorem.

Theorem 1. Suppose we have a 2-mcfg, G, and a pcis A and a homomorphism
h from F(Σ)→ A. Then for all nonterminals N in G:

h(L(φh(G), φh(N)) = h(L(G,N)).

Proof. (Sketch) We define a grammar U with the same set of nonterminals as G
but with only the following set of unary productions.

Ph = {N → ι(M) | h(L(G,N)) = h(L(G,M))} ,

where ι is the identity function. Let H be the grammar G with this additional
set of productions. Then we can see that ΦιH = ΦιG ∨ ΦιU . Clearly ξιH ≥ ξιG.

– By the definitions we have that ΦhU (h(ξιG)) = h(ξιG).
– Using Lemma 3, h(ΦιU (ξG)) = ΦhU (h(ξιG)) = h(ξιG).
– We can show that if h(ξ) ≤ h(ξιG) then h(ΦιU (ξ)) ≤ h(ξιG), and furthermore
h(ΦιG(ξ)) ≤ h(ξιG) and therefore h(ΦιH(ξ)) ≤ h(ξιG).

– By induction on n we can show that for all n, h(Φι,nH (ξ⊥)) ≤ h(ξιG).
– Finally we can show that h(ξιH) ≤ h(ξιG) which completes the proof. ut

Informally, this says the original grammar’s derivations are mapped to the
same element that the merged grammar’s derivations are mapped to. As a con-
sequence, using the fact that h∗(h(x)) ≥ x for all x, we can easily derive the
following algebraic bound on the languages derived in the merged grammar: this
lemma unifies these two separate strands. On the left we have a grammar which
is the result of a morphism; on the right a purely algebraic bound.

Lemma 5. For any grammar G, nonterminal N and homomorphism h,

L(φh(G), N) ⊆ h∗(h(L(G,N))) .

We now define the natural extension of the classic automata theoretic notion
of a monoid recognizing a regular language [4].

Definition 12. Let A be a pcis and h a pcis-homomorphism from F(Σ)→ A,
and L some language over Σ. Then we say that A recognizes the language L
through h iff

L = h∗(h(L)) .

By Lemma 5, if G generates L and A recognizes L through h, then φh is an
exact morphism.

Note that if A is the trivial one-element pcis (A1 = {⊥}, A2 = {⊥ ⊗ ⊥}),
then h∗(h(L)) = Σ∗ and so in general, this will not recognize any language apart
from Σ∗. In this case the pcis is too coarse or small to recognize the language.

Clearly F(Σ) recognizes the language through the identity homomorphism,
and B(L) recognizes L through the homomorphism X → X./, since L = L./.

Our main theorem is then immediate.

Theorem 2. Let G be a 2-mcfg that defines a language L, and define φL to
be the morphism given by φL(N) = L(G,N)./. Then φL is an exact morphism:
L(φL(G)) = L.

We will now show that B(L) is the smallest pcis that recognizes the language.

Lemma 6. Suppose, A is some pcis that recognizes L through a morphism h.
Suppose x, y ∈ P((Σ∗)d) are such that hd(x) = hd(y); then x. = y..

Proof. Suppose l�r ∈ x. for some l, r ∈ Σ∗. That means that lxr ⊆ L; so
h(lxr) ≤ h(L) since h is monotonic. This implies that h({l})◦h(x)◦h({r}) ≤ h(L)
using the fact that h is a homomorphism. So h({l}) ◦ h(y) ◦ h({r}) ≤ h(L) since
h(x) = h(y). Therefore h({l}y{r}) ≤ h(L) since it is a homomorphism. So
h∗(h({l}y{r})) ≤ h∗(h(L)) since h∗ is monotonic. Now h∗(h(L)) = L since A
recognizes L. Therefore h∗(h({l}y{r})) ≤ L. So using the fact that h∗(h(x)) ≥ x
we have {l}y{r} ≤ h∗(h({l}y{r})) ≤ h∗(h(L)) = L. So l�r ∈ y.. The converse
argument is identical and so x. = y..

The argument for sort 2 is identical but requires some additional notation so
for reasons of space we omit it. ut

We now show that B(L) is the unique up to isomorphism smallest structure
that recognizes the language: a terminal object in category theoretic terms.

Theorem 3. Suppose A is a pcis that recognizes L through a surjective homo-
morphism j. Let hL be the homomorphism F(Σ)→ B(L) given by hL(x) = x./.
Then there is a homomorphism f from A to B(L) such that hL(x) = f(j(x)).

Proof. (Sketch) We define f as the pair of functions fd : Ad → Bd(L)

fd(x) = j∗d(x)./

By Lemma 6 for any x, y ∈ (P(Σ∗))d, if jd(x) = jd(y) then x. = y.. This
means that j∗d(jd(x)) ⊆ x./, and therefore (j∗d(jd(x)))./ = x./; in other words
hL(x) = f(j(x)). We can then verify that it is a homomorphism. ut

F(Σ) 1B(L)

A

hl

fj

Fig. 2. A diagram illustrating the universal property of the lattice described in The-
orem 3. The shaded area consists of those pcis which recognize L; the unshaded area
contains those which do not; on the far right is the trivial single element pcis, 1. If A
recognizes the language there is a unique homomorphism from A to B(L).

Theorem 2 means that any grammar for L without mergeable nonterminals
will have nonterminals that correspond to elements of B(L). Theorem 3 shows
that B(L) is the smallest structure that has this property.

7 Conclusion

The first important observation is that the set of derivation contexts of nonter-
minal of dimension 2 in an mcfg correspond exactly to the string contexts of
the form l�m�r. The second observation is that if the family of operations that
build up objects bottom up are viewed algebraically, then homomorphisms of an
appropriate algebra will induce “nice” morphisms of the grammar, and typically
allow a precise characterization of some minimal structure. This general strat-
egy is applicable to a broader range of grammatical formalisms. The extension
to mcfgs of higher dimension is we think straightforward; but we feel that this
does not exhaust the possibilities of this family of techniques.

From one perspective, this is very natural: each nonterminal in a grammar
with context-free derivations defines a decomposition into the set of derivation
contexts and the set of yields. The result here shows that we can reverse this pro-
cess and define nonterminals based on decompositions: the “minimal” grammar
will then be based on maximal decompositions.

The results we have presented here imply that we can assume, without loss
of generality, that the nonterminals of an mcfg correspond to, or represent,
elements of the syntactic concept lattice. Rather than being arbitrary atomic
symbols, they have a rich algebraic structure. This implies that it is possible
to develop techniques for example for translating between cfgs and mcfgs, for
minimizing grammars and so on. This is also an important step towards the
structural learning of mcfgs.

References

1. Alexander Clark. Learning context free grammars with the syntactic concept lat-
tice. In José Sempere and Pedro Garćıa, editors, Grammatical Inference: Theo-
retical Results and Applications. Proceedings of the International Colloquium on
Grammatical Inference, pages 38–51. Springer, 2010.

2. Alexander Clark. The syntactic concept lattice: Another algebraic theory of the
context-free languages? Journal of Logic and Computation, 2013.

3. B. A. Davey and H. A. Priestley. Introduction to Lattices and Order. Cambridge
University Press, 2002.

4. S. Eilenberg. Automata, languages, and machines. Academic press, 1974.
5. S. Ginsburg and H.G. Rice. Two families of languages related to ALGOL. Journal

of the ACM (JACM), 9(3):350–371, 1962.
6. Annius Groenink. Surface without structure: Word Order and Tractability Issues.

PhD thesis, University of Utrecht, 1997.
7. G. Morrill. Categorial grammar: Logical syntax, semantics and processing. Oxford

University Press, 2011.
8. F.C.N. Pereira and S.M. Shieber. The semantics of grammar formalisms seen as

computer languages. In Proceedings of the 10th International Conference on Com-
putational Linguistics and 22nd annual meeting on Association for Computational
Linguistics, pages 123–129. Association for Computational Linguistics, 1984.

9. Sylvain Salvati. MIX is a 2-MCFL and the word problem in Z2 is solved by a third-
order collapsible pushdown automaton. Technical Report Inria-00564552, version
1, INRIA, 2011.

10. Hiroyuki Seki, Takashi Matsumura, Mamoru Fujii, and Tadao Kasami. On multiple
context-free grammars. Theoretical Computer Science, 88(2):191–229, 1991.

11. R. Yoshinaka. Efficient learning of multiple context-free languages with multi-
dimensional substitutability from positive data. Theoretical Computer Science,
412(19):1821 – 1831, 2011.

12. Ryo Yoshinaka. Integration of the dual approaches in the distributional learning
of context-free grammars. In Adrian Horia Dediu and Carlos Mart́ın-Vide, edi-
tors, LATA, volume 7183 of Lecture Notes in Computer Science, pages 538–550.
Springer, 2012.

