A Language Theoretic Approach to Syntactic
Structure

Alexander Clark

Department of Computer Science
Royal Holloway, University of London
Egham, TW20 0EX
United Kingdom
alexc@cs.rhul.ac.uk

Abstract. We consider the idea of defining syntactic structure relative
to a language, rather than to a grammar for a language. This allows
us to define a notion of hierarchical structure that is independent of the
particular grammar, and that depends rather on the properties of various
algebraic structures canonically associated with a language. Our goal is
not necessarily to recover the traditional ideas of syntactic structure
invented by linguists, but rather to come up with an objective notion
of syntactic structure that can be used for semantic interpretation. The
role of syntactic structure is to bring together words and constituents
that are apart on the surface, so they can be combined appropriately.
The approach is based on identifying concatenation operations which
are non-trivial and using these to constrain the allowable local trees in
a structural description.

1 Introduction

When modeling natural languages as formal languages, typically we have a class
of representations R and a function, L, that maps elements of this class to lan-
guages. A classic example would be where R is the class of context free grammars
(cras), and each CFG, G, defines a context free language (CFL) L(G). Given an
element G of R, and a string w, G will typically assign some structural descrip-
tions (SDs) to w. The number may vary — normally if w is not in L we will assign
zero SDs, whereas if w is syntactically ambiguous we may want to have more
than one SD assigned to w. If G is a context free grammar, then the SDs might
be the set of parse trees for w, but other types of grammar define other types
of SDs: dependency structures, or labelings of arbitrary trees as in structurally
complete variants of categorial grammar. An unambiguous sentence might have
only one parse. Alternatively, we might have a formalism where the derivation
trees are not directly equivalent to the SDs; such as TAGs or Tree substitution
grammars. We can call this approach the standard model: a representation de-
fines a set of SDs; each SD defines a unique string. Such a view has been the
dominant paradigm in generative linguistics since Syntactic Structures [1]. This

M. Kanazawa ct al. (Eds.): MOL 12, LNAI 6878, pp. 39]56] 2011.
© Springer-Verlag Berlin Heidelberg 2011

40 A. Clark

leads to the classical distinction between the strong generative capacity of a for-
malism as the set of SDs that it can generate and the weak generative capacity
as the set of strings that it can generate [2].

There is however a problem lurking in this standard model. Since there may
in general be several distinct representations that map to the same language,
when we consider acquisition, the best we can hope for is that we will learn
some grammar which is extensionally (weakly) equivalent to the target. However,
this will define a set of SDs that need not be in any way equivalent to the
original, target set of SDs; yet we need these SDs in order to support semantic
interpretation. This is a version of the famous Argument from the Poverty of
the Stimulus [3].

For cras the problem is particularly acute — there are infinitely many differ-
ent CFGs for any non-trivial language, and these can assign essentially arbitrary
SDs to any finite subset of strings. The most we can say is that, using a pump-
ing lemma, for sufficiently long strings, there must be some non-terminals that
correspond to certain parts of the language.

There are a number of approaches to resolving this problem: one is to take
a grammatical formalism which has canonical forms. For example, one could
have it that the mapping L is essentially injective, (perhaps up to a change of
variables), where all grammars for a given language have the same derivation
trees. This is possible for some formalisms (notably for finite automata) but
seems hard to do for a sufficiently rich class of languages, or for languages which
have the sort of recursive hierarchical structures that we see in natural languages.
Another is simply to stipulate that the class is sufficiently restricted in an ad
hoc way.

Here we take a different approach — rather than having the set of SDs depend
on the grammar G for a language L., we will have them depend on the language
L, directly. Rather than focusing on the grammar as defining the SDs, we will
focus on the SD of a string as being directly generated by the language. A
grammar that defines the language will then be able to derive the SDs of the
string, not necessarily directly out of the derivation tree, but through some other
process. Crucially, two distinct grammars that define the same language will then
assign the same (or isomorphic) sets of SDs to strings.

This approach is close in some respects to earlier traditions of linguistics. First
it has obvious links with the pre-Chomskyan tradition of American structural-
ism, for example in the work of Rulon Wells [4]. However these early approaches
had some obvious flaws. As Searle [5] puts it:

How then can we account for these cases where one sentence containing
unambiguous words (and morphemes) has several different meanings?
Structuralist linguists had little or nothing to say about these cases;
they simply ignored them.

The second, less well known tradition, is the Set-theoretical or Kulagina school
[6I7]discussed at length in [§]. This large group of researchers, operating in the
Soviet Union and Eastern Europe, studied an approach quite similar to this
under the name of configurational analysis. The particular research program

A Language Theoretic Approach to Syntactic Structure 41

was not very productiv7 primarily because the technical approaches tried were
clearly incorrect, and was largely abandoned by the late 1970s as a result of the
critiques of Paduceva, among others.

There are three main problems that a theory of SDs must deal with: the
first is the most basic one of dealing with the hierarchical structure of language:
this means, informally, that the SD must bring together elements that may
be arbitrarily far apart on the surface. The second problem is to deal with
ambiguity — both lexical and structural/syntactic. Finally, any theory must deal
with the problems of displaced constituents — movement in transformational
terminology.

+—(5)

Fig. 1. Diagram comparing grammatical models of SDs with language theoretic ones.
L is the language; G; are grammars and S; are sets of structural descriptions. On the
left we have the standard model: multiple extensionally equivalent grammars, define
different sets of structural descriptions. On the right we have multiple grammars, that
define the same language which defines a unique set of structural descriptions.

In this paper we will present a simple mathematical model for this as well
as various extensions, starting with the most simplest form of distributional
model: the congruence class model. After defining the basic ideas of distributional
learning in Section 2] we will define the initial model based on congruence classes
in Section [l We then briefly consider two extensions: the first (Section M) using
a generalisation of the congruence relation to tuples of strings, which gives a
model similar to Multiple Context Free Grammars (MCFGs), which allows us
to handle cross-serial dependencies and displaced constituents, and the second
(Section Bl using lattice theory, which allows a better treatment of ambiguity.
We then consider some methodological issues in the conclusion.

2 Distributional Learning

We will consider various recent approaches to learning based on ideas of distri-
butional learning. All of these models rely on one basic idea: to look at various

'[9 describes it dismissively as “successless”.

42 A. Clark

types of relationships between strings, or tuples of strings, and their contexts. By
modeling which combinations of strings and contexts lie in the language, we can
construct a family of powerful learning algorithms for various classes of context
free and context sensitive languages.

At its most basic level, we consider the relation between a context, defined as
a pair of strings (I, r), and a substring u, given by (I,r) ~, u iff lur € L. We also
consider the natural extension of this to tuples of strings and their generalised
contexts (I,m,r) ~r, (u,v) iff lumor € L.

The first model [T0/TTIT2], which we call congruential, relies on identifying the
equivalence classes under complete substitutability. This is close to the classic
conception of distributional learning considered by the American structuralists
[13]. We also consider the extension of this to equivalence classes of pairs of
strings [14]. Finally we use formal concept analysis [I5] to construct a hierarchy
or lattice of distributionally defined classes [TG/TTITS].

All of these approaches rely on identifying parts of an algebraic structure
underlying the language. The first relies on identifying the syntactic monoid, and
the second on identifying the syntactic concept lattice. Both of these structures
are associative — in the simple mathematical sense that their concatenation
operation, o, satisfies X o (Y 0 Z) = (X oY) o Z. This is in direct contrast to the
fundamentally non-associative operation of tree conjunction: X (Y Z) is not the
same tree as (XY)Z. Thus, at a first glance, the representational assumptions
of these theories, based on abstractions of string substitution, seem profoundly
incompatible with the hierarchical tree based representations hypothesized in
linguistics. The main contribution of this paper is to show that this can be
resolved.

2.1 Notation

We now define our notation; we have a finite alphabet X'; let 2* be the set of all
strings (the free monoid) over X', with A the empty string. A (formal) language
is a subset of X*.

Definition 1. We will consider various simple formal languages that have var-
1ous types of dependency.

— ALL X*. This language intuitively has no structure.

— ANBN {a™b"|n > 0}. This language is a linear, non-reqular language.

— DYCK The Dyck language. These languages are crucially important as, through
the Chomsky-Schutzenberger theorem they in a sense encapsulate all possible
types of hierarchical structure. Note also that the hierarchical structures are
not binary branching: consider for example ()()(). Here we replace (by a,
and) by b for formatting reasons; so this example would be ababab. We will
consider the DYCK2 language to be the Dyck language of order 2, with a,b
as open brackets and c,d as the corresponding close brackets.

— EQ {w||w|s = |w|p}. The language with equal numbers of as and bs — this is a
non-reqular context free language that does not have any intrinsic hierarchical
structure.

A Language Theoretic Approach to Syntactic Structure 43

— COPY {cwcw|w € (alb)*}

— AMBDYCK Ambiguous version of Dyck language. This language has three
symbols {a,b,c} where a is open bracket, b is closed bracket and c¢ can be
either. More formally this is generated by the grammar S — A\, S — 55,5 —
ASB together with the rules A — a,A — ¢,B — b, B — c.

— DISPLACE A wersion of the Dyck language of order 2, where one letter may
be displaced to the front; we define this more precisely later.

We can concatenate two languages A and B to get AB = {uv|u € A,b € B}.
We will write ordered pairs as (I,7), and A x B for the Cartesian product of two
sets defined as {(u,v)|u € A,v € B}.

A context or environment, as it is called in structuralist linguistics, is just an
ordered pair of strings that we write (I,r) where [and r refer to left and right; [
and r can be of any length. We can combine a context (I,r) with a string v with
a wrapping operation that we write ®: so (I,7) ® u is defined to be lur.

For a given string w we can define the distribution of that string to be the
set of all contexts that it can appear in: Cp(w) = {(I,7)[lwr € L}, equivalently
{fIf ®©w € L}. Clearly (\,\) € Cp(w) iff w € L.

Two strings, v and v, are congruent with respect to a language L, written
u=r v iff Cr(u) = Cr(v). This is an equivalence relation and we write [u]; =
{v|lu =, v} for the equivalence class of u.

Ezample 1. Suppose the language is ANBN. There are an infinite number of con-
gruence classes. [a] = {a} and [b] = {b}, and similarly we have [a¥] = {a*}, and
[b¥] = {b¥}, which are all singleton sets. We have [A\] = {\} and [ab] = {a’b’|i >
0}. Finally we have [a*b] = {a*T?it1|i > 0} and [ab*] = {a*T10F*+i|i > 0} for
every k > 0. Note that L = [A] U [ad].

It is clear that this relation is a congruence of the monoid: for all strings u, v, w
if w =7 v then ww =, vw and wu =1, wv. As a result:

Lemma 1. For any language L, if u =1 v and v =p v’ then uwv =1 u'v';
equivalently [u]r[v]r C [uv]L.

This means that the syntactic monoid X*/ = is well defined, and we can
take [u] o [v] to be defined as [uv]. Note here a crucial difference between set
concatenation [u][v] and concatenation in the syntactic monoid [u] o [v]; the
latter may be larger.

Ezample 2. Suppose the language is ANBN. [a] = {a} and [b] = {b} so [a][b] =
{ab}, a singleton set. But [a] o [b] = [ab] = {a’b’|i > 0}, which is an infinite set,
which clearly properly includes {ab}.

Some distributional learning algorithms for context free grammars [T0J14] define
non-terminals where each non terminal corresponds to a congruence class. These
“congruential” grammars then rely on Lemma [0 to define rules of the form
[uv] — [u][v]. The lemma guarantees that [uv] D [u][v], and that therefore such
rules are in a technical sense “correct”.

44 A. Clark

A natural question is when does [u] o [v] = [u][v]? If this is the case, then in a
sense the rule [uv] — [u][v] is vacuous: it reduces to simple set concatenation. If,
on the other hand, [uv] properly includes [u][v] then this is significant in some
sense. This distinction is the crux of our approach. We will define this formally
below — here we just give an illustrative example.

Example 3. Consider DYCK. The congruence classes are all of the form [b'a’]
where 7, j are non negative integers. [\] = L. Concatenations like [b'a’][b*a!] are
non-vacuous when j and k are both nonzero: in particular [a][b] is non vacuous
since [A] = [ab] and so A is in [ab] but not [a][b]. If either j or k are zero, then
it is vacuous. In particular, [a’][a’] are vacuous, as are [b'][’] and [b?][a?] . For
example, [a] = Lal so [a][a] = LaLLaL = LaLaL = [aa).

3 Congruential Representation

We now define the basic structural descriptions that we use. We will consider
ordinal trees: singly rooted trees where the child nodes of each node are ordered.
Each node in the tree will be labeled with a set of strings. The leaf nodes will be
labeled with singleton sets of elements of X: individual letters. We will sometimes
write these as {a}, but often we will omit the brackets. The yield of a node in
the tree is defined to be the concatenation of the letters at the leafs. Each non
leaf node will be labeled with the congruence class of the yield of that node. We
will call such a tree congruentially labeled.

So, given a string abc we have a number of trees, some of which are shown in
Figure 2l Note that we always have the trivial tree which has only one non-leaf
node. We will not consider trees for the empty string in this paper.

[abc] [abc] [abc] [abc] [abc] [abc]
P P PN PN
[ad] [T} [(‘1} [bc] [ad] [T} [C‘l] [bc] [(‘1} b ¢ abc
Al e a Ul a?f‘»} ¢ abe
a b b ¢ b

Fig. 2. Some congruentialy labeled trees for abc

First we note a basic property of these trees. For every local tree in a tree, the
set labeling the parent of the local tree contains the concatenation of the sets
labeling the children. This is because of the fact that {a} C [a] and by Lemmal[ll
We can state this as a lemma without proof.

Lemma 2. If we have a local tree with parent labeled R and k children labeled
D;y...Dy then RO D;...Dxg.

A Language Theoretic Approach to Syntactic Structure 45

Consider the following notion of the “cut” of a tree: we take a connected subtree
of the graph that contains the root node, and such that if one child of a node
is in the subtree then all children of the node are in the subtree. A cut will be
the sequence of leaves of such a subtree. If we take any cut of the tree we can
form a set of strings by concatenating the labels: every cut will give a subset of
the congruence class of the yield. At the root this is the entire congruence class
of the yield, at the leaves it is just the singleton set containing the yield, and as
the cut moves up (as the subtree gets smaller) the set gets larger monotonically
by Lemma 21

On its own this tree representation is not restrictive. Every string will have
every possible tree. Intuitively we want to say that for some languages, some
trees are disallowed.

3.1 Definition

Definition 2. A local tree with parent labeled R and k children labeled D1 ... Dy,
is vacuous if R=D; ... Dy.

The intuition behind this definition is this: given a local tree, we have the parent
labeled with a set of strings, and the children all labeled with sets of strings.
If the concatenation of all of the sets of strings is equal to the set of strings in
the parent, then the tree structure adds nothing and is vacuous. If on the other
hand the parent set is strictly larger then we have a non-trivial combination.

Ezxample 4. Consider again DYCK. The local tree [aa] is vacuous as

[a] [a]
[aa] = {LaLaL} = [a]]a]. On the other hand, the local tree L is

P

[a] [b]
not vacuous since L = [ab] = [A] contains A which is not in [a][b]. Unary trees,
trees with only one child will always be vacuous unless the child is a leaf and [a]
is larger than {a}. So [u]is clearly vacuous, but [a]is not vacuous, since

\ \
[u] a
aab € [a]. A less natural example is this tree L which is also not vacuous.
TR~

abab

The final tree illustrates that this constraint — that every local tree is non-vacuous
— is not enough. We also need to have a constraint that says that the tree is as
deep as possible, otherwise we will always have a simple flat structure for every
string.

Definition 3. A local tree with parent R and k children labeled Dy . .. Dy, which
is mot vacuous, is minimal if there is no subsequence of children D;D;yy ... D;,
J >t such that a local tree [D;Diyq ... Dj] # D;...Dj.

46 A. Clark

Ezample 5. Consider again DYCK. L is not minimal since [ab] # {ab}.
TR~
abab
L is minimal. L is not minimal since [a] # a.
P ~~
[a] [b] ab

Given these conditions we can now define a condition on trees, that will define
the set of SDs for a given string in a language.

Definition 4. A congruentially labeled tree is valid if and only if every non-root
local tree is not vacuous and is minimal. We allow however the root tree to be
vacuous, but if it is not vacuous, then it must be minimal.

We could eliminate the condition on the root tree by assuming that each string
in L is bracketed by a distinguished start and end symbol.

Ezample 6. Consider DYCK. This is a valid tree for abab: with a vacuous root

node. [A] On the other hand [A] is not valid as it is not
N X~
A A [C‘l] [1‘9] [C‘l] [1‘9]
] B) [a]) aboab
a b ab

minimal. Indeed there is only one valid tree for this string.

Lemma 3. For the Dyck language, for every string in L, there is a unique valid
tree where the non leaf nodes are labeled only with [M], [a], [b]. Matched pairs of
opening and closing symbols are always in the same local tree.

Proof. Looking at the leafs of valid trees, since [a] and [b] are infinite, all letters
will be introduced by a pre-terminal node — that is to say, a node with only
one child, which can only be non-vacuous if that child is a leaf. Next, note that
we can never have a node labeled with [a‘] or [b°] when i > 1 since local trees
[aa] — [a][a] are vacuous. Note also that we cannot have a node labeled with
[ba] since [ba] — [b][a] is vacuous. Valid local trees are of the form L — [a][b],
L — [a]L[b], L — [a]L[b].

Note that the structural descriptions do not correspond to the set of parse trees
of any CFG, since the set of valid local trees is infinite for this language. An
important consequence is thus locality: matching open and closing brackets are
always in the same local tree. There are no other redundant arbitrary local trees.
We can thus say, in this trivial example that we have a dependency between two
letters, when the leaves occur in the same local tree. We can represent this
diagrammatically for the string aababb:

A Language Theoretic Approach to Syntactic Structure 47

Ezample 7. Consider EQ. Writing local trees to save space as [xy] — [z][y], we
can see that [aa] — [a][a] is vacuous, as is [aab] — [a][ab] but [ab] — [a][b] is
not. So for something like abab we have several different structures. Intuitively,
we could have a dependency between the first pair, or between the first and the
last: [A] [A]

TN I

Al (A [a [\ [b]
al Tl 1al " Tl 1
a b ab }‘3 ;

Consider however the string aabb in the language EQ. In this example, we slightly
extend our notion of dependencies since here we have [a] in the same local tree
rather than the letter itself. This only has one SD, which gives the dependencies

PN U

a a b b but no SD that gives ¢ a b b

So in this model, because of the tree restriction we miss out some plausible
dependencies: namely those where the dependencies cross.

Example 8. Consider ANBN. [a'] = {a'}, [b'] = {b'}, [\] = {\}. L = [ab] U [\
Other congruence classes are of the form [a’h] and [ab?], which are infinite. Note

that [a][ab] = [aab] but that neither is [a][b] equal to [ab], nor is [a][ab][b] equal
to [ab].
Every tree has a unique structure which is linear: it has this form (for aabb).
[ab]
T
a [ab] b
ab

Note that pretheoretically there is no reason to assume, in a string like aabb,
that the correct dependencies are nested rather than crossing. As we shall see,
when we move to a richer model, we get a larger set of possible dependencies in
this case.

3.2 Problems

Let us consider some examples where this approach breaks down. If L = X*,
then the only valid trees are ones of depth 1, as all trees will be vacuous. If
L = X7T, then every binary branching tree will be valid. This sharp distinction
is perhaps undesirable.

Consider the following language, DISPLACE. We start off with DYCK2 — a
language over {a, b, ¢, d} where a,b are open brackets and ¢, d the corresponding
close brackets. Given a string w in this language, we consider the following
transformation. We take any one occurrence of ¢ or d, and replace it with a
new symbol x. The symbol we have removed we place at the front of the string

48 A. Clark

followed by a symbol y. Think of = as a resumptive pronoun, and y as a relative
pronoun. So given a string like acabdc, we can pick one of the three occurrences
of ¢ or d and get cyarabde, cyacabdx or dyacabxrc. The shortest strings in this
language are cyax and dybzx.

Let us consider this using our simplest model. Note that ax and bx are clearly
not congruent, but that ax includes all strings in DYCK2 that are “missing” a c;
i.e. [ax] = {ax, aacx,aazxc,baxd, ... }.

So we will have trees like

L L
/y\ /'\
¢y J[ax] d 'y [bz]

— T T
alaz] ¢ a [bx] c
ax b x

but we will miss the dependency between the x and the ¢ or d at the beginning
of the sentence. One approach is to try to have a richer representation, which
passes the dependency up through the tree, in a manner similar to GPSG [19].

Consider also AMBDYCK. This is a structurally unambiguous language with
some lexical ambiguity. As a result of the lexical ambiguity some strings will
have more than one SD. We would like the string cabc to have one SD, but the
strings accb and ccce to have two each. This is not possible in this model as all of
the concatenations with ¢ are vacuous. This requires the lattice based techniques
described in Section

4 Multiple Context Free Grammars

Given the well-known fact that natural languages are not CFLs, it is natural to
turn to richer formalisms and representations; just as the theory of distributional
learning was lifted from cFGs to Multiple Context Free Grammars (MCFGs) [20]
by Yoshinaka [2T22], we can lift the theory of structural descriptions to an MCFG
framework easily enough. We assume some familiarity with MCFGs.

We consider now the natural extension of this approach to tuples of strings;
for simplicity we will restrict ourselves to the special case of 2-MCFGs, where
non-terminals generate either strings or pairs of strings. Given a pair of strings
(u,v) € X* x X* we define the natural generalisation of the distribution of this
pair in L as in [I4]:

Cr(u,v) ={{,m,r)|l,m,r € X% lumvr € L} (1)

We then say that (u,v) =y, (v/,v") iff CL(u,v) = Cr(v/,v’) and write [u,v]L,
for the equivalence class of (u,v) under this relation. We will call this a bicon-
gruence class. Note that this is a congruence of the two natural monoids over
XEox X

For example consider the cory language L = {cwcw|w € (a|b)*}. This is
clearly not context free. We can see that [a,a] = {(a,a)} — no other strings

A Language Theoretic Approach to Syntactic Structure 49

are congruent to this, but that (¢,c¢) =5 (ca,ca) = (cb,cb). Indeed [e,] =
{(cw, cw)|w € (a|b)*}.

Let us consider some basic properties of these congruence classes: first, if
u =p v and v =1, v/, we have that (u,v) =1 (v/,v) =1 (u,v") =1 (v/,0).
Therefore [u,v] D [u] x [v]. More generally [u,v] will be a union of products of
congruence classes of strings.

[wol= J [W]xW]

(u' ") €lu,v]

A natural question to ask is: when is [u,v] = [u] X [v]? In a sense, if this
condition holds then we gain nothing by considering the tuple class rather than
the original class. If on the other hand, we have it that [u, v] is strictly larger than
[u] x [v] then this is interesting; since [u,v] will always be a union of products
of congruence classes, we can think of it as specifying a relation. For example,
in the simplest case [u,v] might be [u] x [v] U [u/] X [v']. This means that if we
have a string in [u] in one place, then we must have a string in [v] in the other
place, and if we have a string in [v], similarly we must have a string in [v]: this
means that there is a relation between the strings we substitute for u and the
strings we must substitute for v to maintain grammaticality.

Definition 5. Given a language L, we say that a bicongruence class [u,v]y, is
trivial iff [u,v]r = [u]r X [v]L.

It should be noted right now how weak this is — it is only because the language is
so trivial that this works. [a, b] just refers to any a followed by any b; we are not
restricting them to any structural configuration. It is only because the language
is so simple that we know that any a is on the left hand side and any b is on
the right hand side that we can have this result. More realistic languages will
require a much richer model.

Lemma 4. All bicongruence classes of DYCK are trivial.

Proof. Suppose that [bla?,b¥a!] = [b¥a®, bYa?]. Note that we will have (a, b/ a*,
b!) in the distribution. and (a, b%a¥, b*). a’b*aV a*bYa*b' € L So we know that
w < 7; so by symmetry w = ¢. Similarly we can argue that j < z, and z < j so
x =j. etc.

Example 9. — If L = ANBN, note that (a,b) =1, (aa,bb). So [a,b] = {(a*,b")|i >
0} which is clearly larger than [a] x [b].
— Consider EQ: here [a,b] =/, [ab, ab] so again this is non trivial.
— Consider COPY: [¢,] = {(cw, cw)} which is non-trivial, but [a,a] = {(a,a)}
which is trivial.

We can now start to define the appropriate tree structures. First we define a class
of functions, from tuples of tuples of strings to tuples of strings. These are the
sorts of functions used in the definition of MCFGs; we add some standard restric-
tions. We write the class of functions of arity ¢« — ji,...jx to be Fi_;, . ;.. Each

50 A. Clark

function of the type that we are concerned with can be written as 7 sequences
of indices: We write an index as an ordered pair of positive integers [m,{]: intu-
itively this means the mth part of the I{th component, where m is 1,..., 7 and
lisin 1...k. We require that each index occur exactly once, and furthermore
that if m < m’ then [m,] must occur before [m’,[]. Here we only consider pairs
of strings so m is at most 2. We may have trees that are non binary so [could
be larger than 2.

Simple string concatenation is in F1_.1 1 and is written as ([1, 1][1, 2]).

We will write tuples of various arities as t, and we will overload =;. We
can now extend the functions in F to sets of tuples, in the natural way: e.g.
f(T1,T2) = {f(t1,t2)[ts € T1,t2 € Ta}.

Note that because of our construction it is the case that for all functions
feF if feF, and if t; =L s; then f(t1,...,tx) = f(s1,...,sk). That is
to say, [f(t1,...,tk)] 2 f([t1],.-.,[tk]), by a simple extension of Lemma/[I} see
[14] for proof. Alternatively we can see this as being the claim that the relation
=y is a congruence with respect to the functions in F.

Again we can consider cases where the concatenation is vacuous:

Definition 6. If we have a function f € F of various tuples t1,...,tk, we say
it is vacuous if [f(t1,...,tx)] = f([t1], ..., [tk])-

Ezample 10. Consider again EQ: if f is ([1,1][1, 2], [2, 1][2, 2]), then f((a, b), (a, b))
= (aa, bb) is vacuous since [aa,bb] = {(u,v)|uv € } = [A, A], which is equal to
FA AL A AD.

Definition 7. A non-vacuous function f € F of various tuples tq1,...,tk, is
minimal if for any two functions g, h € F such that f(t1,...,tx) = g(t1,...,ty,
h(tj41, ..., t1), 141, ..., tk), at least one of g and h are vacuous. If we can find

a pair of non-vacuous such functions, then f is not minimal.

Note that if all tuples are of arity 1, then this definition coincides with the
definition earlier in Section [Bl

Now we define the corresponding notion of a tree. We have a tree, where the
leafs are labeled with a singleton set of a letter as before. We label each non-leaf
node of the tree with a function, which determines how the string or string tuple
corresponding to that node is formed from the strings or tuples corresponding
to the child nodes. The arity of the functions must be compatible: we say that
the arity of a node is the arity of the output of the function, and in a local tree
with children ¢4, ..., tx with arities a1, ...ax and where the tree is labeled with a
function of arity ag, the function must be of arity ag — az, ..., ax. This condition
merely states that the functions must be of appropriate types given that some
nodes are labeled with strings and some with tuples of strings. Clearly this also
means that some arities are disallowed — if we have a unary local tree where the
child has arity one and the parent has arity two, there is no string that can fill
the second slot of the parents label, and thus this situation is impossible.

A Language Theoretic Approach to Syntactic Structure 51

We then define the string function: we recursively compute a string that cor-
responds to each node, using the functions, and proceeding bottom up from the
leaves. The yield of the tree is the string labeling the root. We stipulate that the
root node, as with the leaf nodes, must have arity 1. Each node is then labeled
with a string or pair of strings, which is formed by the application of the function
to the strings or tuples of strings at each child node. We say that it is a tree
for a string w, if the string labeling the root is w. Since all of the leafs contain
single letters of w, and because of the restrictions of the rules, it is clear that, in
a tree for a string w, there will be a bijection between the leafs of the tree and
the occurrences of letters in w.

The set of valid trees for a string w will then be the set of trees where each
local tree is non vacuous and minimal, with the exception as before for the root
node. We will illustrate this definition with some simple examples.

[cabeab) : f3 (L] ¢ “ b ¢ ¢ b
[cab, cc‘zb] i f2 [C?J»“w}
/’\ /’\
[ca,ca] : f2 b b w a ¢
i ¢ vie
—~ ax

Fig. 3. Trees from Examples 11 and 12

Ezxample 11. Consider COPY: we only have one structure for strings in the copy
language. So for cabcab, given the functions f3 = ([1,1][1,2]), fo = ([1,1][1,2],
[2,1][1,3]) and f1 = ([1,1],[1,2]), we have the tree on the left of Figure Bl
Note that the non root local trees are non vacuous: taking the middle one:
[f2([e,c],a,a)] = {(cwa,cwa)|lw € (a|b)*}, whereas [ca,ca] = {(cw,cw)|w €
(alb)*} which is strictly larger. This gives us the dependencies shown on the
right of Figure B

Ezample 12. Consider DISPLACE. We have [cy, ax] = [dy, bxz] which is therefore
not trivial, and we have non vacuous local trees that combine with this. This
gives us some trees for cyaazxc like the one in the middle of Figure [3

Again, please note that the presence of the “resumptive pronoun” x and the
relative pronoun y and the fact that we only have one clause is vital to this
very simple model working. Nevertheless, this richer model, based on the theory
of congruential MCFGs provides a possible solution both for representing cross
serial dependencies, and for representing displaced constituents.

52 A. Clark
5 Lattice Approaches

The approaches based on congruence classes are too restrictive since exact equal-
ity of distribution is too strict a requirement. For the simple artificial examples
we consider here it is mostly adequate, but for natural languages it is too sim-
plistic [23]. In English, for example, it is quite rare to find two words that are
exactly substitutable. “cat” does not have quite the same distribution as “dog”
— consider the phrase “to dog someone’s footsteps” — any two verbs that have
slightly different sets of subcategorisation frames will not be congruent, and so
on. The problems are only magnified when we move to the phrasal level. The
important point is that though “cat” and “dog” may have distributions that
differ slightly, they nonetheless overlap to a great extent. We thus need a mech-
anism that can represent the shared distribution of two or more words: a more
abstract representation that can work with classes that are larger than the con-
gruence classes. Indeed congruence classes are the smallest possible sets that can
be defined distributionally.

It is therefore natural to move to a representation that uses larger classes. We
therefore look to the lattice based approaches described in [2417]. Rather than
considering just the congruence classes, we consider the Galois lattice formed
from the context-substring relation. Given a set of strings S we can define a set
of contexts S’ to be the set of contexts that appear with every element of S.

S ={(,r):Ywe S lwr € L} (2)

Dually we can define for a set of contexts C' the set of strings C’ that occur with
all of the elements of C'

C'={w:V(l,r)eC lwr € L} (3)

A set of strings S is defined to be closed iff S” = S. Given any set of strings
S, S” is always closed. For those familar with these lattice techniques, a set S is
closed iff (S, S’} is a concept. Here we consider only the set of strings rather than a
pair of strings and contexts, for notational continuity with the preceding sections.
Each closed set of strings will be a union of congruence classes. If S = {w}, then
S” will include [w] but also any other strings u where Cr(u) 2 Cr(w). Note
that L is always a closed set, since (A, A) € S’.

We will therefore consider trees as before, but where each non leaf node is
labeled with a closed set of strings that includes the yield of the subtree. The
leaf nodes will be labeled as before with singleton sets of letters. That is to
say, rather than the set of labels being drawn from congruence classes, they are
drawn from the set of closed sets of strings. It is now possible that there will be
more than one possible label for each node since there may be many closed sets
of strings that contain a given string.

Ezxample 13. Consider ANBN. There are 3 closed sets of strings that contain a:
these are {a}, {a1b'i > 0} and X*.

A Language Theoretic Approach to Syntactic Structure 53

Definition 8. A tree is lattice labeled if every non leaf node in the tree is labeled
with a closed set of strings, and every leaf node is labeled with a singleton letter,
and they satisfy two conditions: first each non leaf node is labeled with a set that
contains the concatenation of the labels of the child nodes; secondly, the root
node must be labeled with a subset of L.

We can now modify the conditions on trees to reflect the different set of labels.
First of all we require that each local tree have the set at the parent properly
containing the concatenation of the sets at the children. Secondly, as before we
have a minimality condition, which we formulate identically. This will give us a
set of representations that will include the congruentially labeled trees as before,
with the minor change that each node with yield w will be labeled with {w}”
rather than [u]. We can get a more interesting set of trees by adding one more
condition that the label at each node is as large as it can be.

Definition 9. A non leaf node in a lattice labeled tree is maximal if it cannot
be replaced with a larger set, without violating the lattice labeling conditions in
Definition [8. We then say that a valid tree will be a lattice labeled tree where
every non leaf node is maximal.

Note that as a result, every valid tree will have a root labeled L.

L L L L L L L

CcC AB A L B L L L L L L A L B

cc cc aABb ABAB cccCcC ABAB cABc¢
[Ll L] Ll ||
cc acch cccec cccec ab

Fig. 4. Some lattice labeled trees. From left to right we have an invalid tree for cc and
then a valid one. We then have two valid trees for acch, and then an invalid tree for
ccce followed by one of the two valid trees for this string. Finally we have the unique
tree for cabc.

We will now consider AMBDYCK. The lattice structure of this language is
rather complicated. We will just consider a few closed sets, A = {a}”, B = {b}",
C ={c}’ ={e,cab,ccc,...}. Note that C C A and C' C B. We also have L, and
C? = {cc}" where C? C L. Figure[M illustrates some lattice labeled trees for this
language.

6 Discussion

We have presented a basic model and two extensions to deal with displacement,
cross-serial dependencies and ambiguity. It is possible to combine the two: to
have a lattice of tuples of strings. Note that this idea of structural descriptions

54 A. Clark

differs in several respects from the traditional derivation trees. The notions of
ambiguity that we use are unrelated to the idea of inherently ambiguous CFGs.
Indeed the inherent structure of the DYCK language shows the unsuitability of
CFG derivation trees for modelling syntactic structure, though this can of course
be dealt with by the notational extension of allowing regular expressions on the
right hand sides of productions [25].

This paper is largely mathematical: we do not consider any algorithms in
this paper but it is natural to consider using congruential learning algorithms
to learn a congruential CFG/MCFG for a language and then to parse using that
representation. The example of DYCK shows that the parse trees will not directly
correspond to the rules, but every parse tree with respect to a congruential CrFG
will be a congruentially labeled tree: it will not in general be valid. Space does
not permit a full exploration of these possibilities. There are two main problems
that need to be dealt with: testing to see whether a local tree is vacuous, and
coping with the possibly exponential number of parse trees for a given string in
a compact way. Appropriate dynamic programming algorithms must be left for
future work. We also do not consider any language theoretic issues. It is natural
to consider the relation between these trees and the class of congruential context
free grammars (CCFGs). For example, take the class of all languages that have
the following property: there is a finite set of congruence classes K such that
every valid tree for every string in L has labels drawn only from K. What is the
relation between this class and the class of cCrGs?

How do the traditional linguistic ideas of constituent structure compare to
the ideas we present here? First note that the now standard ideas of constituent
structure [26] arose out of exactly the distributional learning algorithms from
structuralist linguistics that we are operationalising here [27), p.172, fn 15]. There
are standard tests for constituent structure: these include substitutability, the
existence of pro-forms, coordination tests and the like. The approach we present
here does not explicitly use these properties, except of course the distributional
criterion of substitutability. However, if there is a pro-form, then this means that
the local tree is likely to be non vacuous, and thus these algorithms implicitly
exploit the same information. Therefore we can derive these tests from a deeper
principle. Rulon Wells [4] says:

What is difficult, but far more important than either of the easy tasks,
is to define focus-classes rich both in the number of environments char-
acterizing them and at the same time in the diversity of sequence classes
that they embrace.

This is almost exactly the point: it is only a local tree where the parent has a di-
verse collection of “sequence-classes”, in the sense that they are not characterised
by a single sequence of classes, that will be non vacuous.

A central question is whether distributional learning methods are rich enough
to acquire a suitable notion of syntactic structure from raw strings. In other
words, is it possible to go from strings to trees, and still richer structures
without an external source of information, such as semantic or prosodic struc-
ture? The present approach seems to indicate that at least for some classes of

A Language Theoretic Approach to Syntactic Structure 55

languages, which include many simple examples, this is possible. A second ques-
tion is whether a purely local concatenation operation is sufficient, or whether
it is neccessary to allow non-local operations: in Minimalist Program terms, is
external MERGE enough or do we need internal MERGE/MOVE?

We close with an often misquoted passage from Book VIII of Aristotle’s Meta-
physics:

In the case of all things which have several parts and in which the
totality is not, as it were, a mere heap, but the whole is something beside
the parts, there is a cause;

In the context of this paper we can say that where the whole is greater than
the concatenation of the parts, we must look for a cause; and that cause is
syntactic structure.

Acknowledgments. We are grateful to the reviewers for helpful comments.

References

1. Chomsky, N.: Syntactic Structures. Mouton, Netherlands (1957)

2. Miller, P.: Strong generative capacity: The semantics of linguistic formalism. CSLI
Publications, Stanford (1999)

3. Clark, A., Lappin, S.: Linguistic Nativism and the Poverty of the Stimulus. Wiley-
Blackwell (2011)

4. Wells, R.S.: Immediate constituents. Language 23(2), 81-117 (1947)

5. Searle, J.R.: Chomsky’s revolution in linguistics. The New York Review of
Books 18(12) (June 1972)

6. Kulagina, O.S.: One method of defining grammatical concepts on the basis of set
theory. Problemy Kiberneticy 1, 203-214 (1958) (in Russian)

7. Sestier, A.: Contribution a une théorie ensembliste des classifications linguistiques.
In: Premier Congres de 1’Association Frangaise de Calcul, Grenoble, pp. 293-305
(1960)

8. van Helden, W.: Case and gender: Concept formation between morphology and syn-
tax (II volumes). Studies in Slavic and General Linguistics. Rodopi, Amsterdam-
Atlanta (1993)

9. Meyer, P.: Grammatical categories and the methodology of linguistics. Russian
Linguistics 18(3), 341-377 (1994)

10. Clark, A., Eyraud, R.: Polynomial identification in the limit of substitutable
context-free languages. Journal of Machine Learning Research 8, 1725-1745 (2007)

11. Clark, A.: Distributional learning of some context-free languages with a minimally
adequate teacher. In: Sempere, J.M., Garcfa, P. (eds.) ICGI 2010. LNCS, vol. 6339,
pp. 24-37. Springer, Heidelberg (2010)

12. Clark, A.: PAC-learning unambiguous NTS languages. In: Sakakibara, Y.,
Kobayashi, S., Sato, K., Nishino, T., Tomita, E. (eds.) ICGI 2006. LNCS (LNAI),
vol. 4201, pp. 59-71. Springer, Heidelberg (2006)

13. Chomsky, N.: Review of Joshua Greenberg’s Essays in Linguistics. Word 15, 202—
218 (1959)

56

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.
27.

A. Clark

Yoshinaka, R., Clark, A.: Polynomial time learning of some multiple context-free
languages with a minimally adequate teacher. In: Proceedings of the 15th Confer-
ence on Formal Grammar, Copenhagen, Denmark (2010)

Ganter, B., Wille, R.: Formal Concept Analysis: Mathematical Foundations.
Springer, Heidelberg (1997)

Clark, A., Eyraud, R., Habrard, A.: Using contextual representations to efficiently
learn context-free languages. Journal of Machine Learning Research 11, 2707-2744
(2010)

Clark, A.: Learning context free grammars with the syntactic concept lattice. In:
Sempere, J.M., Garcia, P. (eds.) ICGI 2010. LNCS, vol. 6339, pp. 38-51. Springer,
Heidelberg (2010)

Clark, A.: Efficient, correct, unsupervised learning of context-sensitive languages.
In: Proceedings of CoNLL, Uppsala, Sweden, pp. 28-37 (2010)

Gazdar, G., Klein, E., Pullum, G., Sag, I.: Generalised Phrase Structure Grammar.
Basil Blackwell, Malden (1985)

Seki, H., Matsumura, T., Fujii, M., Kasami, T.: On multiple context-free grammars.
Theoretical Computer Science 88(2), 229 (1991)

Yoshinaka, R.: Learning mildly context-sensitive languages with multidimensional
substitutability from positive data. In: Gavalda, R., Lugosi, G., Zeugmann, T.,
Zilles, S. (eds.) ALT 2009. LNCS, vol. 5809, pp. 278-292. Springer, Heidelberg
(2009)

Yoshinaka, R.: Polynomial-time identification of multiple context-free languages
from positive data and membership queries. In: Sempere, J.M., Garcia, P. (eds.)
ICGI 2010. LNCS, vol. 6339, pp. 230-244. Springer, Heidelberg (2010)

Scholz, B., Pullum, G.: Systematicity and Natural Language Syntax. Croatian
Journal of Philosophy 3(21), 375 (2007)

Clark, A.: A learnable representation for syntax using residuated lattices. In: de
Groote, P., Egg, M., Kallmeyer, L. (eds.) Formal Grammar. LNCS, vol. 5591, pp.
183-198. Springer, Heidelberg (2011)

Manaster-Ramer, A.: Dutch as a formal language. Linguistics and Philoso-
phy 10(2), 221-246 (1987)

Carnie, A.: Constituent structure. Oxford University Press, USA (2008)
Chomsky, N.: Language and mind, 3rd edn. Cambridge University Press,
Cambridge (2006)

	A Language Theoretic Approach to Syntactic Structure
	Introduction
	Distributional Learning
	Notation

	Congruential Representation
	Definition
	Problems

	Multiple Context Free Grammars
	Lattice Approaches
	Discussion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

