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Abstract

This paper presents an algorithm for strong
learning of probabilistic multiple context free
grammars from a positive sample of strings
generated by the grammars. The algorithm is
shown to be a consistent estimator for a class of
well-nested grammars, given by explicit struc-
tural conditions on the underlying grammar, and
for grammars in this class is guaranteed to con-
verge to a grammar which is isomorphic to the
original, not just one that generates the same
set of strings.

1 Introduction

A fundamental theoretical goal of linguistics is
to characterise a set of possible human languages
that is sufficiently large and expressive to describe
the attested natural languages while sufficiently re-
stricted that it is learnable given information plau-
sibly available to the child learner in the course of
first language acquisition. There is a broad con-
sensus. modulo some concerns about copying (Ko-
bele, 2006), that a class of mildly context-sensitive
grammars may be descriptively adequate (Stabler,
2013). Such grammars can generate a rich class of
structural descriptions (trees) that serve as latent
variables for the syntax/semantics interface, but
the acquisition of such richer grammars is harder
than the acquisition of simpler formalisms such as
context-free grammars (CFGs). Yoshinaka (2009)
showed how ideas of distributional learning for
CFGs (Clark and Eyraud, 2007) could be extended
to these mildly context-sensitive grammar formal-
ism using multiple context free grammars (MCFGs)
(Seki et al., 1991). However these algorithms, and
their extensions (Yoshinaka, 2010) are only weak
learning algorithms, that converge only to a gram-
mar that is weakly equivalent to — generates the
same set of strings as — the original target gram-
mar. For the purposes of theoretical linguistics this

is inadequate (Berwick et al., 2011), as we want a
grammar that is strongly equivalent to — generates
the same set of trees as — the original grammar.
Moreover from a probabilistic perspective weakly
equivalent grammars are insufficient (Scicluna and
de la Higuera, 2016). Recently Clark and Fijalkow
(2020) presented a strong learning algorithm for
probabilistic context-free grammars (PCFGs), using
only a sample of strings generated by the grammar
(Horning, 1969). In this paper we extend that ap-
proach to a class of (probabilistic) MCFGs; or rather
to several different classes. The approach of Clark
and Fijalkow (2020) relies on the existence of what
they call, following Stratos et al. (2016), anchors,
which are terminal symbols that are unambiguously
generated by a single nonterminal. On this assump-
tion, the distribution of the terminal will be equal to
the distribution of the nonterminal and with some
ancillary technical conditions, this suffices to es-
tablish identifiability of the class of grammars and
thence their learnability.

It is natural to extend this idea to the MCFG case,
where some nonterminals generate not strings but
tuples of strings; pairs of strings only in this paper.
We can therefore define the anchoring condition for
nonterminals which generate pairs of strings — of
dimension 2 — as saying that there are a pair of
terminals a, b which are generated only by a single
production from a nonterminal of dimension 2.

However there is a significant technical problem
to be overcome: the distribution of this pair may
be much larger than the distribution of the non-
terminal it anchors since we may have more than
one occurrence of each symbol. For example if
we have the string aabb, then we know that there
must be two occurrences of the anchoring produc-
tion in any derivation of this string but we don’t
know which pairs of a and b "match". We will
state this problem more formally in section 3, but
what is necessary is some way of restricting the



distribution of the substring in some way, and we
will present a method that works with well-nested
MCFGs (Kanazawa et al., 2011), Moreover the addi-
tional power of the formalism introduces new sorts
of structural indeterminacy of the derivation trees
which need to be handled carefully.

This is the first strong learning algorithm for
these sorts of grammars and the goal of this paper
is not to provide a complete solution to the problem
but rather to identify the key difficulties and get an
understanding of some of the ways in which these
difficulties can be overcome. Nonetheless the class
of grammars that can be learned, though descrip-
tively inadequate in several important ways, have
some interesting properties which we discuss at the
end, and can represent the sorts of cross-serial de-
pendencies that motivated the development of these
mildly context-sensitive formalisms (Joshi, 1985).
2 Definitions

We assume some familiarity withMCFGs, or equiva-
lent formalisms, and standard definitions of formal
languages, as for example Yoshinaka et al. (2010).
We assume a finite alphabet Σ; Σ∗ is the set of finite
strings of elements of Σ. We use � for the empty
string, since we need � for another purpose. We
write concatenation of two strings as uv and occa-
sionally as u ⋅ v when we want to emphasize it. We
will write n(u;w) for the number of times u occurs
in w, where u,w ∈ Σ∗, and we write |w| for the
length of a string.

We need to deal with various types of string; tu-
ples of strings, like ordered pairs, and strings with
gaps in. We will do this by using two additional
symbols, □ which represents a gap, and | which
represents a boundary. We write � for Σ ∪ {□, |}.
Define Skg to be the set of strings with k− 1 bound-aries and g gaps.
Skg = {w ∈ �

∗ ∣ n(□;w) = g, n(|;w) = k − 1}

This represents a k-tuple of strings with g gap sym-
bols occurring somewhere. Notationally we will
use w for elements of (Σ ∪ {□, |})∗ and w for ele-
ments of Σ∗. We will occasionally write the bound-
ary symbol as a comma where there is no risk of
confusion.
In this paper we consider k ∈ {1, 2} and g ∈

{0, 1, 2}. The vast majority of the time we are just
going to be using Sk0 and S1k for k ∈ {1, 2}. Theseare k-tuples of strings, and contexts of k-tuples of
strings; so things like u,u|v, l□r and l□m□r.

The gap symbols represent variables, or spaces
to be filled and so elements of Skg represent sim-
ple functions from (Σ∗)g → (Σ∗)k. In particular a
S11 like l□r represents a function from strings to
strings that we might write as f (x) = lxr, and an
S12 like l□m□r represents f (x, y) = lxmyr. As
functions,□ and□|□ are the identities on strings
and pairs of strings.
More generally and formally we can combine

an element of Sij with one of Sjk to get one of Sik,defined by u⊙ v in the natural way by replacing all
of the gap symbols in u with corresponding tuple
elements of v; we lift this to sets in the natural way.

We now define the distribution of a set of k-tuples
of strings, U ⊆ Sk0 , in a language L as

U⊳ = {c ∈ S1k ∣ c⊙k U ⊆ L}

Conversely for C ⊆ S1k

C⊲ = {u ∈ Sk0 ∣ C⊙k u ⊆ L}

For singleton sets {w}, we will just write w⊳.
2.1 Grammars
We now define the class of grammars that we use,
which are a restricted subclass of MCFGs (Seki et al.,
1991) of dimension 2.
Definition 1. An MCFG, a grammar, is a tuple
⟨Σ, V , S, P ⟩ where Σ is an unranked finite set of
terminal symbols, V is a finite nonempty ranked
set of nonterminal symbols of ranks 1 or 2, which
we call the dimension of the nonterminal. We write
V (1) and V (2) for the sets of dimensions 1 and 2
respectively. S ∈ V (1) is a distinguished start sym-
bol and P is a set of productions which we define
below.
We only consider non-deleting, non permuting,

�-free productions so we can use a slightly lighter
notation than is normal. We have a countably infi-
nite set of variables indexed by a pair of positive
integers,  = {xi,j ∣ i ∈ ℕ+, j ∈ {1, 2}}. The vari-
able xi,j refers to the jth component of the tuple
generated by the ith nonterminal on the right hand
side of the production. We will abbreviate x1,j as
xj and x2,j as yj and x1 as x and y1 as y. A pro-
duction, �, is a triple ⟨f,A, �⟩ written A → f (�),
where A ∈ V , � ∈ V ∗ and f is a finite string of
variables, terminals and boundary symbols. A is
the left hand side of the production, � is the right
hand side of the production, and f represents a
function which constructs a tuple of strings from



a tuple of tuple of strings, via substitution of the
variables. If � = � then we omit the brackets and
writeA→ f . In this case f is just a tuple of strings,
which represents a leaf node in the derivation. The
rank of a production is defined as rank(�) = |�|,
and dim(�) = dim(A).

We need to restrict the function f in various ways
to make � a well-formed MCFG rule, and further
to put it in a restricted normal form. We assume
that terminals are introduced by special lexical or
bilexical rules. Possible values of f are as follows:

• The rank is 0 and either dim(A) = 1 and f = a
for some a ∈ Σ, or dim(A) = 2 and f = a|b
for some a, b ∈ Σ. We call these lexical or
bilexical rules, and we can write them as A→
a.

• Alternatively the rank is nonzero, and f con-
tains no terminal symbols. If dim(A) = 1,
then f contains only variables and if dim(A) =
2 then it contains one occurrence of the bound-
ary symbol. If there is a boundary symbol
then it cannot occur at the beginning or end
of the string (the production is �-free). f con-
tains exactly one occurrence each of variables
corresponding to the nonterminals in �; So
if � = B1…Bk then for each i there is ex-
actly one occurrence of the variable xi,j for
1 ≤ j ≤ dim(Bi), and no other variables.
Moreover if dim(Bi) = 2 then xi,1 occurs be-
fore xi,2, (non-permuting) and if i < j, then
xi,1 occurs before xj,1.

Given a particular f then, the rank is fixed, as
are the dimensions of all nonterminals in the pro-
duction. We will typically assume that the dimen-
sions of all nonterminals are compatible with f .
We say that a production A→ f (B1…Bk) is non-
well-nested if there are two nonterminals on the
right hand side Bi, Bj both of dimension 2, such
that f = … xi,1… xj,1… xi,2… xj,2… . It is well-
nested if it is not non-well-nested. A grammar is
well-nested if all of its productions are well-nested.

We will also use a Horn clause notation for pro-
ductions (Kanazawa, 2009) when we want to dis-
cuss particular productions: For example, a CFG
production like A → BC would be written in that
notation as A(xy) ← B(x)C(y), and would be for-
mally the triple A → x1,1x2,1(BC). If the right
hand side is empty then we write the production as
A(a) or A(a, b) or A(b). See Clark (2014) for an in-
troduction to this notation and toMCFGs more gener-

ally. Other rules are for example the rank 1 produc-
tion A(x1x2) ← B(x1, x2); which takes a dimen-
sion 2 production, and concatenates the two com-
ponents, and A(x1y1, y2x2)← B(x1, x2), C(y1, y2)
which is a well-nested production which combines
two dimension 2 nonterminals.
We assume further that S cannot appear on the

right hand side of any productions, nor can it appear
on the left hand side of any lexical productions. We
do allow unary productions with S on the left hand
side, S(x)→ A(x); which are not allowed with any
other nonterminal on the left hand side. Otherwise
the only rank 1 production allowed is of the form
A(x1x2)← B(x1, x2).
We define S and  to be the sets of possible

well-nested functions for productions with S on the
left hand side, and with some other nonterminal on
the left hand side, respectively, that satisfy these
conditions. If we restrict the functions to these
sets then we define a normal form for the class of
well-nested MCFGs of dimension 2; in the sense
that for every language generated by a well-nested
MCFG of dimension 2, there is a grammar in this
class that generates the same language, that uses
only productions with functions in these sets, as
can be demonstrated using standard techniques (e.g.
Kanazawa et al. (2011)), adapted from the standard
approaches for converting CFGs into Chomsky nor-
mal form. Indeed although we allow in this paper
productions of rank greater than 2, restricting pro-
ductions to those of rank 2 does not change the set
of languages generated as these well-nested gram-
mars can be binarised.

2.2 Derivation trees

We will give a tree based semantics for this formal-
ism, since we are interested in learning these trees
and defining probability distributions over trees. A
derivation tree for a grammar uses the set of pro-
ductions as a ranked alphabet, where the rank of
each production is equal to the number of nontermi-
nals on the right hand side. For each nonterminal
A we define an additional symbol □A of rank 0.
This symbol represents a hole or gap where an A is
needed. The sort of a tree is the left hand side of
the production labeling the root of the tree, or A if
the tree is□A.
These trees must satisfy the condition that if �

is a production of rank k, then the sort of the nth
child of a node it labels must be equal to the nth
nonterminal on the right hand side of �. Obviously



if the production is of rank 0, then the node has no
children and the condition is vacuous. Let T (G) be
the set of all these trees. These include degenerate
trees which just have a single node labeled with
a rank 0 symbol; we won’t use a special symbol
for these. Given such a tree �, we can count the
number of occurrences of a label in the tree using
the notation n(�; �) or n(□A; �).
Let Ω(G,A) be the set of such trees of sort A,

and which have no occurrences of any gap symbols.
Let Ξ(G,A) be the set of such trees of sort S where
there is exactly one occurrence of a gap symbol
which is □A. We can combine an element � of
Ξ(G,A) with an element � of Ω(G,A) to get an
element ofΩ(G,S) by replacing the single element
of□A in � with �. We call the result �⊕�. We will
also lift this in the natural way to sets: for example
Ξ(G,A)⊕Ω(G,A) is the set of all derivation trees
with at least one production of sort A in. Note that
since S can only occur on the left hand side of a
production, Ξ(G,S) is a set consisting of a single
tree with one node labeled□S .
We can map trees and derivation contexts into

strings and string contexts using a string yield func-
tion (sy). A tree inΩ(G,A) has a string yield which
is an element of Sdim(A)0 . A derivation context in
Ξ(G,A) has a string yield which is in S1dim(A). Thefunction string f represents a function: when we
want to evaluate the function we will use the no-
tation f̃ ; this occurs by substituting the variable
xi,j for the jth component of the ith argument and
concatenating the results. We can define the string
yield function recursively bottom up as follows:

IfA is of dimension 1, then sy(□A) = □ and if it
is of dimension 2 then sy(□A) = □|□. Otherwise:
if the production is A→ f (B1,… , Bk), then

sy(�(�1,… , �K )) = f̃ (sy(�1),… , sy(�K ))

This also covers the case of a rank 0 production:
the string yield of such a production (A → f ) is
just the constant f , which takes no arguments.
For a set U ⊆ Sdim(A)0 , we define Ω(G,A,U) =

{� ∈ Ω(G,A) ∣ sy(�) ∈ U}, and likewise
for derivation contexts. Where appropriate we
will omit G, and the set brackets so for example,
Ω(A,w) is shorthand for {� ∈ Ω(G,A) ∣ sy(�) =
w}. Given the restrictions on the grammars we
have imposed, Ω(G,A,w) is always finite.

Given this we define
(G,A) = {sy(�) ∣ � ∈ Ω(G,A)}

and the set of contexts of a nonterminal as
(G,A) = {sy(�) ∣ � ∈ Ξ(G,A)}.

The language defined by the grammar, (G), is
then (G,S). Note of course that for every context
c ∈ (G,A) and every stringw ∈ (G,A), c⊙w ∈
(G).
We assume that every production occurs in at

least one element of Ω(S). Under this assumption
it’s enough to give the list of productions to specify
a MCFG, as the nonterminals and terminals can be
read off the productions, and the start symbol is
the unique nonterminal that occurs only on the left
hand side of a production.
2.3 Examples
We give some trivial examples including one with
cross-serial dependencies as seen in some natural
languages (Huybrechts, 1984; Shieber, 1985)
Example 1. V (1) = {S},V (2) = {A}, Σ =
{a, a′, b, b′} and we have productions: �A =
A(a, a′),�B = A(b, b′), and

�S = S(x1x2)← A(x1, x2)
�X = A(x1y1, y2x2)← A(x1, x2), A(y1, y2).

This defines the language

L1 = {aa′, abbb′b′a′, baa′b′,…}

Note this grammar is ambiguous: abbb′b′a′ for
example has two parse trees, as shown in fig. 1.
If we change �X to

A(x1y1, y2x1)← A(x1, x2), A(y1, y2)

this gives us a non-context-free language, with
a non well-nested MCFG, LCOPY, which contains
{aa′, abba′b′b′, aba′b′,…}. This is again ambigu-
ous and the two trees above now both have the yield
abba′b′b′.

Finally we give a well-nested grammar that gen-
erates a non context-free language.
Example 2. A(a, b),C(c), D(d),
E(e),F (f ),C(c′), D(d′), E(e′),F (f ′) and

S(x1x2)← A(x1, x2)
A(x1y, x2z)← A(x1, x2), C(y), E(z)
A(x1y, x2z)← A(x1, x2), D(y), F (z)

Note this grammar is unambiguous, well nested,
and generates a non-context-free language, LSWISS
related to the Swiss German example of Shieber
(1985), which contains strings like accd′beef , of
the form aubv where u and vmust contain matching
sequences.
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Figure 1: Sample derivation trees from example 1 and a
decomposition. On the top we have two derivation trees
both of which have yield abbb′b′a′. In the bottom we
decompose the first of these trees at the boxed node into
a context � ∈ Ξ(G,X), where sy(�) = a□□a′, and a
tree � ∈ Ω(G,X)where sy(�) = bb|b′b′. If we combine
themwe have sy(�⊕�) = a□□a′⊙bb|bb′ = abbb′b′a′.

3 The problem

Clark and Fijalkow (2020) present a learning algo-
rithm for PCFGs using distributional learning based
on anchors. In the CFG case an anchor is a terminal
which is derived uniquely from a single nontermi-
nal: in the notation of this paper, a is an anchor for
A ∈ Σ(1), if A(a) is the unique production involv-
ing a in the grammar. In this case of course, the
observable distribution of the terminal a is equal to
the unobserved distribution of the nonterminal A:

a⊳ = (G,A)

Moreover for any context c ∈ a⊳,
Ω(S, c⊙ a) = Ξ(A, c)⊕A(a)

These two properties allow one to infer the param-
eters of productions, indeed the very existence of
productions, using distributional analysis.
We can then naturally extend this to define an

anchor for a nonterminal of dimension 2, A, as
being a pair of distinct terminals (a, a′) such that
A(a, a′) is the only production using a or a′. But
now neither of these two properties hold in gen-
eral. For example, suppose we have the language

LCOPY. If we let a = a, a′ which is an anchor for
A, and consider the string w = aaa′a′, then there
are not 2 but 4 contexts c such that c ⊙ a = w,
namely {□a□a′,□aa′□, a□□a′, a□a′□} only
two of which are in (G,A). So a⊳ ⊋ (G,A).
This is because we don’t know which pairs of a, a′
are being generated in the same production.
We will say that a context c ∈ a⊳, is an unam-

biguous context of a, when it is a context of A (i.e.
in (A)) and additionally satisfies Ω(S, c ⊙ a) =
Ξ(A, c)⊕A(a). For the approach to work, we need
some way of restricting the observed contexts of
2-anchors to their unambiguous contexts. Note that
all contexts of 1-anchors are unambiguous contexts
in this sense.
4 Dyck contexts

Before we describe the key element of our solu-
tion, we need to recall the Dyck language (Gins-
burg, 1966) and some of its properties. The Dyck
language over the two letter alphabet p, q is de-
fined by the unambiguous context-free grammar
S → �, S → SpSq; we write this language as
. We say two occurrences of p and q match in
an element of  if they are derived in the same
step. Equivalently we can define the Dyck lan-
guage as the set of all strings w in {p, q}∗ such
that n(p;w) = n(q;w) and where for every prefix v
of w, n(p; v) ≥ n(q; v).
Suppose that we have a language L defined by

an MCFG where the nonterminal A is anchored by
a, a′. Then clearly in every string w ∈ L, we have
that n(a;w) = n(a′;w), since every time we in-
troduce an a we also introduce an a′. Moreover,
the occurrences of a will always precede the corre-
sponding occurrences of a′ since the productions
are non permuting, so if u is a prefix of w then
n(a; u) ≥ n(a′; u). It is therefore clear that in such a
language, the occurrences of a, a′ will form a sub-
set of the Dyck language if we ignore all the other
terminals. Let us formalise this precisely now.
For distinct terminals a, a′ define the string ho-

momorphism ℎa,a′ via:

ℎa,a′(b) =

⎧

⎪

⎨

⎪

⎩

p if b = a
q if b = a′
� otherwise

(1)

Definition 2. A pair of distinct terminals (a, a′)
is a Dyck pair in a language L if for all w ∈ L,
ℎa,a′(w) ∈ .



Lemma 1. If A is anchored by a, a′ in an MCFG
defining the language L then a, a′ is a Dyck pair.
Consider L1: here the nonterminal A is an-

chored by a, a′ which is a Dyck pair; ℎa,a′(LCOPY) =
{pnqn ∣ n ≥ 0} ⊂ .
The converse is not true: it is not the case

that in general the Dyck pairs will correspond
to the anchors. There are two issues: first we
might have productions like A(xy) ← B(x)C(y)
where B and C only generate b and c respectively,
and only occur on the right hand side of this
particular rule. A similar situation can occur with
any production with two distinct dimension 1
nonterminals on the right hand side. Secondly,
we might have the situation where we have two
(or more) productions like A(c, c′) and B(c, c′)
and no other productions using c or c′. In this
case c, c′ will form a Dyck pair but will clearly
not be an anchor. This latter case can be handled
exactly the way we handle ambiguity for dimension
1 nonterminals, but the former requires some
additional assumptions. At its most fundamental
the problem is this: suppose we have a language
which consists only of the single length two string
cd. We can represent this in two obvious ways.
A(x1x2)← B(x1, x2)

B(x1, x2)

A(xy)← C(x), D(y)

C(c) D(d)

We need to resolve this structural indeterminacy in
some way, if we want strong learning to be possible.
There are a number of ways to proceed here:
here we assume that every nonstart dimension
1 nonterminal must have two anchors. This is
unnecessarily strong for this particular case, but it
also serves to rule out some other problems later
on.
Definition 3. A grammar G is doubly anchored if
for every A ∈ V there are two terminals a, a′ such
that if dim(A) = 2 then A(a, a′) is the only produc-
tion using either, and if dim(A) = 1 then A(a) and
A(a′) are the only productions using either.
For instance, example 2 is doubly anchored.

Lemma 2. Suppose G is a doubly anchored MCFG.
If a, a′ is a Dyck pair then a and a′ can occur only
in a production of the form A(a, a′).

Proof. Suppose a occurred in a derivation tree �
using a production � of sortB. We can replace a sin-
gle occurrence of � with �′, a anchoring production
of B that does not contain a to get a tree �′. Since

the yield of �′must havematching numbers of a and
a′, � must be either B(a, a′) or B(a′, a). Suppose
� = B(a′, a). This can’t be the only production for
this Dyck pair, or ℎa,a′ would always start with a′,
so there is some anchor for �. Replace all other
occurrences of � with some other anchor for B to
obtain a tree �′. Then ℎa,a′(sy(�′)) = qp ∉ ,
which is a contradiction.

Let us suppose now that we have some a, a′
which are anchors for a nonterminal A. We can
say that an occurrence of a and a′ in a string w =
lama′r match if there is a derivation of w where
they are generated by the same production A(a, a′);
in other words if their context l□m□r ∈ (G,A).
Nowwe cannot in general determine in such a string
the matching pairs as discussed above. But if the
grammar is well-nested then the matching is always
determined, even if the string is ambiguous; indeed
they are generated by the same production iff their
images match in the Dyck language.

Let PAIRS(L) be the set of Dyck pairs of the lan-
guage L and define
L = {w ∈ Σ∗ ∣ ∀a ∈ PAIRS(L), ℎa(w) ∈ }

Clearly L ⊆ L. We define the following four
sets:
D10 = L

D20 = {u|v ∈ S20 ∣ u ⋅ v ∈ L}

D11 = {l□r ∈ S11 ∣ l ⋅ r ∈ L}
D12 = {l□m□r ∈ S12 ∣ m ∈ L, l ⋅ r ∈ L}

Note that by the properties of the Dyck language,
D12⊙D20 ⊆ L, andD11⊙D10 ⊆ L. The crucial ob-
servation here is the following lemma, which means
that for these grammars it is enough to consider the
subsets D and not the whole sets S.
Lemma 3. IfG is well-nested and double anchored,
then for all nonterminals A ∈ V (k), (G,A) ⊆ Dk0
and (G,A) ⊆ D1k.

Proof. By induction on Ω(G,A) in the first case,
and in the second case on Ξ(G,A) based on the
path from the root of the tree to the gap symbol,
□A.
Lemma 4. IfG is well-nested and double anchored,
and a is an anchor for A, then a⊳ ∩ D1dim(A) =
(G,A), and all of these contexts are unambiguous
contexts.



We now define for U ⊆ Sk0

U► = U⊳ ∩ D1k

and for C ⊆ S1k

C◄ = C⊲ ∩ Dk0

These form a pair of Galois connections between
Dk0 and D1k, which obey the usual identities, which
we use below. So for example U► = U►◄►.

Crucially, these Galois connections also satisfy
a fundamental lemma, analogous to the CFG con-
dition that for all sets of strings X, Y (X ⋅ Y )⊳⊲ =
(X⊳⊲ ⋅ Y ⊳⊲)⊳⊲.
Lemma 5. Suppose f is a well-nested function
of rank r, and let L be some language. Then for
all Xi ∈ Dki0 which are sets of tuples of strings of
suitable dimension,

f (X1,… ,Xr)►◄ = f (X►◄1 ,… ,X►◄r )►◄

Proof. Clearly the left is a subset of the right, since
Xi ⊆ X►◄i . Let di be the arity of Xi. Suppose
c ∈ f (X1,… ,Xr)►; if not then it will trivially
true.
This means that c ⊙ f (X1,… ,Xr) ⊆ L. So

c ⊙ f (□d1 ,… ,Xr) ⊆ X►1 , since f is well-nested.
And X►1 = X►◄►1 . So c ⊙ f (□d1 ,… ,Xr) ⊆
X►◄►1 . So c ⊙ f (X►◄1 ,… ,Xr) ⊆ L. Therefore
c ∈ f (X►◄1 ,… ,Xr)►. Repeating for X2 etc.:

f (X1,… ,Xr)► ⊆ f (X►◄1 ,… ,X►◄r )►

Therefore
f (X1,… ,Xr)►◄ ⊇ f (X►◄1 ,… ,X►◄r )►◄

This restricted distribution is well-behaved so
we can redefine the standard notion of validity to
use this. Since S cannot be anchored, and to avoid
handling it as a special case, we can stipulate that we
have a special terminal symbol s where s⊳ = {□},
which is of course equal to (G,S), since the start
symbol can occur only at the root of a derivation
tree.
Definition 4. Suppose we have a well nested doubly
anchored grammar, where A,B1,…Bk are nonter-
minals anchored by a,b1,…bk, respectively. Let
� = A → f (B1,… , Bk) be a production we say
that it is valid if a► ⊆ f̃ (b1,… ,bk)►.

Note that this is now well-defined (independent
of the choice of anchors) by lemma 5. Clearly
all productions in the grammar are valid, since
f̃ (b1,… ,bk) ∈ (G,A). We can also show some-
thing that is approximately the converse.
Lemma 6. Suppose G = ⟨Σ, N, S, P ⟩ generates
the language L; Let G′ = ⟨Σ, N, S, P ′⟩ and where
P ′ ⊇ P , and all of � ∈ P ′ are valid with respect to
L.
If a is an anchor of A, then (G′, A) ⊆ a►◄.
Note that this then implies that (G′) = (G),

since s►◄ = L.
Proof. Proof by induction on the derivation trees
in Ω(G′, A).
Base case:suppose � = � = A(b), so sy(�) = b.

Then since this production is valid a► ⊆ b► and
so a►◄ ⊇ b►◄, and since b ∈ b►◄, b ∈ a►◄.
Now do inductive step: suppose topmost pro-

duction is � = A → f (B1,…Bk) and � =
�(�1,… , �k). By the inductive hypothesis sy(�i) ∈
b►◄i . So sy(�) ∈ f (b►◄1 ,… ,b►◄k ), and so
sy(�) ∈ f (b►◄1 ,… ,b►◄k )►◄

By lemma 5, sy(�) ∈ f (b1,… ,bk)►◄. So
sy(�)► ⊇ f (b1,… ,bk)►. Validity of � says that
a► ⊆ f (b1,… ,bk)►. Therefore sy(�)► ⊇ a►. So
sy(�)►◄ ⊆ a►◄, and sy(�) ∈ a►◄.
5 Other conditions

Beyond the anchoring condition we need two ad-
ditional conditions which are essentially the same
as in Clark (2021a); the first is a bound on the am-
biguity, which will allow for identifiability of the
parameters.
Definition 5. A MCFG G is locally unambiguous
(LUA) if for every production � in the grammar
of the form A → f (B1…Br), there is a string w
in the language which can be decomposed into a
c ∈ D1dim(A), and a sequence of tuples u1,…ur, so
c⊙k f̃ (u1,…ur)) = w, such that:

Ω(S,w) = Ξ(A, c)⊕ �(Ω(B1,u1),… ,Ω(Br,ur))

Note that this is a generalisation of the definition
of an unambiguous context earlier: If A(a) is an an-
choring production then the unambiguous contexts
are just the ones that satisfy this LUA condition.

The second condition is based on lemma 6; as a
result of this lemma, we can see that adding valid
productions to a grammar will not increase the set



of strings generated. This means that we can stip-
ulate that the grammar must contain all valid pro-
ductions. However this may lead to excessive am-
biguity, which will then violate the LUA condition.
Accordingly we want to eliminate "redundant" pro-
ductions.
We can combine two productions into another:

�1 = A → f (�B) and �2 = B → g(�) can
be combined to get �3 = A → ℎ(��) where ℎ
is the suitable function formed from f and g; we
will skip the formal definition since it is obvious
but fiddly since we need to renumber the variables.
Clearly rank(�3) = rank(�2)+rank(�1)−1. So for
example A(x1x2) ← B(x1, x2) and B(x1y, x2) ←
C(x1, x2), D(y) can be combined to A(x1yx2) ←
C(x1, x2), D(y). Intuitively, if we already have the
first two, we don’t also need the third.
We fix a maximal rank r and define  and S

to be all well-nested productions of rank at most
r. We order the productions so that if rank(f1) <
rank(f2) then f1 precedes f2, and such that dimen-
sion 2 functions precede dimension 1 functions. For
the case of r = 2, we give the explicit sets:
 = ⟨x1x2, x|y, x|y1y2, xy1|y2, x1|x2y, x1|yx2,

x1x2|y, x1y|x2, x1|x2y1y2, x1|y1y2x2, x1x2|y1y2,
x1y1|y2x2, x1x2y1|y2, x1y1y2|x2, xy, x1x2y,

x1yx2, xy1y2, x1x2y1y2, x1y1y2x2, ⟩

and
S = ⟨x, x1x2, xy, xy1y2, x1x2y, x1yx2,

x1x2y1y2, x1y1y2x2⟩

Note that these are ordered so that if we compose
two productions to form a third, the first two will
precede the others in these lists. We need to define
the notion of a possible production now: given an
anchored grammar G with alphabet Σ and nonter-
minals V , we define P (G, ,S) to be the union
of these sets:

{A(b) ∣ A ∈ V (1) ⧵ {S}, b ∈ Σ}
{A(b, c) ∣ A ∈ V (2), b, c ∈ Σ}

{A→ f (B1,…Bk) ∣ A,Bi ∈ V ⧵ {S}, f ∈ }
{S → f (B1,…Bk) ∣ Bi ∈ V ⧵ {S}, f ∈ S}

where the dimensions of the nonterminals in the last
two are restricted to those matching the dimensions
of f .
Definition 6. Given an anchored MCFG G, a
valid production is redundant wrt  ,S if it is

the composition of two other valid productions in
P (G, ,S).
Definition 7. (Clark, 2021a) An MCFG is com-
plete wrt  ,S if the set of productions is those in
P (G, ,S) that are valid and not redundant.
This definition then means that the set of pro-

ductions is determined by the language given the
anchored nonterminals. Together these definitions
mean that the grammar itself, the nonterminals and
the set or productions and of course the terminals
are determined by the language, which we prove in
the next section.
5.1 Identifiability of Well-Nested Class
We define the class of grammars Gr to be all dou-
bly anchored MCFGs where the functions are well
nested of rank at most r and which are complete.
Theorem 1. Suppose G and G′ are inGr such that
(G) = (G′). Then G is isomorphic to G′.

Proof. Let L = (G). Suppose that a is a Dyck
pair; andA(a) is in the grammar. Let b be an anchor
for A. Then b► ⊆ a►. Therefore consider the
set of distributions {a► ∣ a is a Dyck pair}. The
minimal elements of this ordered by set inclusion
will correspond to the dimension 2 nonterminals
via (G,A) = a►; by completeness we cannot
have more than one nonterminal for each of these
minimal elements. Consider now the set of bilexical
productions: by completeness, these must consist
of exactly those productions A(b), where if a is
an anchor for A, a► ⊆ b►. Therefore the set of
bilexical productions is defined by L. Consider
now the set of all terminals, T , that do not occur
in any bilexical productions. Consider the set of
distributions {a⊳ ∣ a ∈ T }. The minimal elements
of this set must correspond to the nonterminals of
dimension 1, via the correspondance a⊳ = (A).
Again the lexical productions must be exactly the
set of all valid productions; namely those where
a⊳ ⊆ b⊳, where a is an anchor for A.
There is therefore a bijection � between the

nonterminals of G and G′ where �(A) = A′ if
(G,A) = (G′, A′).
It remains to be shown that the set of produc-

tions is uniquely determined given these produc-
tions. The set of valid productions is clearly de-
termined by the language; the only issue then is
to verify that given this set there is a unique set of
non-redundant productions. If a production � is
formed by the composition of two productions �1



and �2 then we can see that functions of �1 and �2
will strictly precede the function of �. This ensures
uniqueness.

6 Weighted MCFGs and Probabilistic
MCFGs

The learning paradigm we use is probabilistic so
we start by defining the probabilistic grammars that
we use. A stochastic language is a probability dis-
tribution over Σ∗, wrtten ℙ, and this will be defined
by a probabilistic MCFG, (Levy, 2005; Kato et al.,
2006; Kallmeyer and Maier, 2013) which we de-
fine via a slightly more general formalism called
weighted MCFGs. We use two different parameter-
isations, the top-down which corresponds to the
stochastic MCFGs studied by Kato et al. (2006) and
the bottom-up introduced in the CFG case by Clark
and Fijalkow (2020) which is useful from a learn-
ability perspective. The presentation here follows
that in that paper.
Definition 8. A weighted MCFG ⟨G; �⟩ is a MCFG
together with a parameter function �, from produc-
tions to positive real numbers.

� ∶ P → ℝ+.

We define a weight function w ∶ T (P ) → ℝ+.
For each such tree � we define:

w(�) =
∏

�∈P
�(�)n(�;�)

Note that for � ∈ Ξ(G,A) and � ∈ Ω(G,A),
w(� ⊕ �) = w(�)w(�)

The weight of a set of trees Ω, is w(Ω) =
∑

�∈Ωw(�). For a nonterminalA define two quanti-
ties which are normalization constants, the sums of
the inside and outside probabilities to use the CFG
terminology (Eisner, 2016):

I(A) = w(Ω(G,A))
O(A) = w(Ξ(G,A))

The quantity I(S) is called the partition function
in the case of PCFGs (Nederhof and Satta, 2008). If
I(S) = 1 this then defines a probability distribu-
tion overΩ(G,S) and via that a stochastic language
whose support is (G), by summing over all deriva-
tion trees with a given yield as follows:
w(u) =

∑

�∈Ω(G,S)∶sy(�)=w
w(�) = w(Ω(G,S, {w}))

(2)

Given such a weighted MCFG, with I(S) = 1,
for every production �, we can define E(�) the ex-
pected number of times that the production � occurs
in a tree. This is

E(�) =
∑

�∈Ω(G)
w(�)n(�; �) (3)

We can define the expectation of a nonterminal
as the sum of expectations of all productions with
that nonterminal on the left hand side.

E(A) =
∑

A→f (�)∈P
E(A→ f (�)) (4)

We assume throughout that the expected length
of strings under these distributions,∑a∈Σ E(a), isfinite, which implies that all these expectations are
finite too. We can see that for all nonterminals A,

I(A)O(A) = E(A)

Note that E(S) = 1 under these assumptions, as
it occurs exactly once in every tree in Ω(G,S), at
the root; indeed clearly I(S) = O(S) = 1, since
Ξ(G,A) has one element,□S , which has weight 1.
There is an indeterminacy in these parameters

in that one can always pick some nonterminal that
isn’t S, say A, and scale the parameters of produc-
tions with A→ f (B1,… , Br) on the left hand side
by some � > 0, and scale all productions with A
on the right hand side B → f (C1,… , Cr) by �−n
where n is the number of times A occurs on the
right hand side, and the distribution over trees will
remain unchanged. There are two natural ways of
resolving this, two parameterisations: one where
we stipulate that for allA,O(A) = 1 (and as a result
I(A) = E(A)) and one where we stipulate that for
all A, I(A) = 1, and therefore O(A) = E(A). The
latter gives us the regular probabilistic top down
generative process. The former gives us the bottom
up parameterisation, which is crucial to the success
of these primal distributional learning algorithms.
Note that for any production � = A →

f (B1,… , Br)

E(�) = O(A)�(�)
∏

i
I(Bi)

Therefore in the bottom up parameterization, where
O(A) = 1 and I(A) = E(A) this gives us

E(�) = �(�)
∏

i
E(Bi)

and so
�(�) =

E(�)
∏

i E(Bi)
(5)



6.1 Anchored grammars with bottom-up
parameters

Given a stochastic language ℙ, for a terminal a we
define E(a) = ∑

c∈a⊳ ℙ(c⊙a). This is the expectednumber of times the terminal a will appear in a
random string. Now suppose that a = a, a′ is a
Dyck pair; clearlyE(a) = E(a′) so we defineE(a) =
E(a).
Then if a is an anchor for A then in the bottom

up parameterisation
�(A(a)) = E(a)

Suppose a context c ∈ a►. Then
Ω(G,S, c⊙ a) = Ξ(G,A, c)⊕A(a)

So
ℙ(c⊙ a) = w(Ξ(G,A, c))�(A(a))

Therefore
w(Ξ(G,A, c)) = ℙ(c⊙ a)

E(a)
Consider some other tuple of terminals b; not

necessarily an anchor, and a context c ∈ a►. Then
Ω(G,S, c⊙ b) ⊇ Ξ(G,A, c)⊕A(b)

Therefore:
ℙ(c⊙ b) ≥ w(Ξ(G,A, c))�(A(b))

So:
�(A(b)) ≤ ℙ(c⊙ b)E(a)

ℙ(c⊙ a)
Since this is true for all contexts c ∈ a► we have:

�(A(b)) ≤ inf
c∈a►

ℙ(c⊙ b)E(a)
ℙ(c⊙ a)

(6)
More generally, suppose that � = A →

f (B1,… , Br) is some production with A,Bi an-
chored by a,bi. Then again for any unambiguous
context c, writing u = c⊙ f (b1,… ,br)

ℙ(u) ≥ w(Ξ(G,A, c))�(�)
∏

i
�(Bi(bi))

Rearranging and minimizing with respect to c:
�(�) ≤ inf

c∈a►
ℙ(c⊙ f (b1,… ,br))E(a)

ℙ(c⊙ a)
∏

i E(bi))
(7)

Importantly the right hand sides of eqs. (6)
and (7) do not depend on the grammar, but only
on the distribution over strings. If the grammar is
LUA, then in these two equations the minimum will
be attained, and we will have an equality.1

1Proving this is a little involved as we need to verify that the
context is still LUA when all of the subtrees are just anchoring
productions, which requires verifying some properties of (⋅)►.

7 Algorithm
Given the identifiability of the classGr from strings,
and the parameter identities above it is straightfor-
ward to design an algorithm which will learn this
class from a sample of strings generated by the tar-
get grammar; we define the convergence criterion
below in theorem 2.

The algorithm takes as input a sample of strings,
and hyperparameters , S ; these implicitly define
an upper bound r on the rank of the productions.
It outputs a weighted MCFG, which can then be
converted into a probabilistic MCFG (Clark and Fi-
jalkow, 2020). The grammar will uses tuples of
terminal symbols, i.e. anchors, directly as nonter-
minals — with this grammar format there is no
need to distinguish the terminal and nonterminal
symbols; but it’s important to remember that we
use f̃ to denote the application of a function f . So
we might have a production a → f (b, c) where
f = xy, and a, b, c ∈ Σ are anchors that represent
nonterminals. f̃ (b, c) is then the application of that
concatenation function to b, c taken as terminals,
namely the string bc. The start nonterminal will be
a special distinguished symbol s as discussed.
7.1 Estimators
We start by defining some naive plug in estima-
tors (Clark and Fijalkow, 2020). Assume we have
a sample of N strings w1,… , wN . Let Σ̂ be the
observed terminal symbols. For a string w ∈ Σ̂∗,
let N(w) be the number of times w = wi, and
ℙ̂(w) = N(w)∕N . For a ∈ Σ̂ define

Ê(a) = 1
N

∑

i
n(a;wi)

If a = a1, a2
Ê(a) = Ê(a1)

Lemma 7. All of these estimators are consistent;
ℙ̂(w) is a consistent estimator for ℙ(w) and Ê(a)
is a consistent estimator for E(a), and if a is a Dyck
pair, then Ê(a) is a consistent estimator for E(a).

For a k-tuple a define the frequent contexts to be
F (a) = {c ∈ a► ∶ N(c⊙ a) >

√

N}

For a suitable linear function f , and tuples of ap-
propriate arity, a,b1,… ,br:

�̂(a→ f (b1,… ,br)) =

Ê(a)
∏r

i=1 Ê(bi)
min
c∈F (a)

ℙ̂(c⊙ f̃ (b1,… ,br))
ℙ̂(c⊙ a)

(8)



For tuples of the same dimension a,b, we will write
the estimate for the rank 0 production as a �̂(a→ b).
Lemma 8. Suppose the strings are generated by
a weighted MCFG, G; � where grammar G ∈ Gr;
given a production �∗ = A → f (B1,… , Br), let
� be the result of replacing all nonterminals with
their anchors.
If � is not valid, then for any � > 0, there is an

N such that with probability greater than 1 − �,
�̂(�) = 0.
If �∗ ∈ P , then for any � > 0, � > 0, there is

anN such that with probability greater than 1 − �,
|�̂(�) − �(�∗)| < �.

Proof. Since it is not valid there is some c ∈ a►,
such that c ⊙ f̃ (b1,… ,bk) ∉ (G). Let N be
sufficiently large that c ∈ F (a) with probability at
least 1 − �, and the result follows.
7.2 Algorithm
Given these estimators we define the following al-
gorithm.

• Let Σ be the observed alphabet and let s be an
additional symbol. P ← ∅,B ← ∅

• We first compute the set of possible Dyck pairs
D ⊆ Σ × Σ.

• We use Algorithm FindExtremal with D as
input to identify a set of 2-anchors, V2.

• For every pair b ∈ Σ × Σ, and every a =
(a1, a2) ∈ V2: if �̂(a → b) > 0, then P ←
P ∪{a(b)}with parameter �̂(a→ b) andB ←
B ∪ {a1, a2}.

• We use Algorithm FindExtremal with Σ ⧵ B
as input, and initial symbol s to identify a set
of 1-anchors, V1.

• For every b ∈ Σ and a ∈ V1 ⧵ {s}, if �̂(a →
b) > 0, P ← P ∪{a(b)}with parameter �̂(a →
b).

• For every f ∈  , if r is the rank of f then for
every A,B1,…Br in V1 or V2 of appropriate
dimension, let � = a → f (b1,… ,br). If
� is not redundant wrt P then let � = �̂(�),
If � > 0 then add this production to P with
parameter �,

• Do the same for every f ∈ S where A is
restricted to be s.

• Construct a weightedMCFG with nonterminals
of dimension 2, V2, of dimension 1, V1 ∪ {s},
start symbol s, set of productionsP , with these
associated parameters.

• Convert the weighted MCFG to a probabilis-
tic MCFG via one iteration of the expectation-
maximisation algorithm.

This algorithm is polynomial in the size of the
input data. The only computationally nontrivial
part of this is the final conversion step, which is of
the same complexity as parsing (Eisner, 2016). In
the case of well-nested MCFGs, the grammars can
be binarised and complexity is (|wi|

6) (Gómez-
Rodríguez et al., 2010). This step can be omitted if
all that is needed is the conditional distribution of
trees given strings.
Input: Strings w1, w2,… , wN , and

k-tuples A, optional initial symbol s
Output: A set of k-anchors Ak ⊆ A
Ak ← ∅ or {s};
for a ∈ A do

if ∀b ∈ A, �̂(a→ b) > 0 or �̂(b→ a) =
0 then

if ∀b ∈ Ak, �̂(b→ a) = 0 then
Ak ← Ak ∪ {a};

end
end

end
return Ak

Algorithm FindExtremal: Find extremal ele-
ments of a set of tuples, of dimension 1 or 2.

8 Correctness
We will now prove the correctness of the algorithm
for a certain class of probabilistic grammars that we
will now define as Pr. For clarity we will gather
together the various conditions that we require in
one place.

• First, we have the normal form restrictions
defined in section 2.1. These restrict the lan-
guages generated to those generated by well-
nested MCFGs of dimension 2, a well studied
class, except for the empty string which is not
generated by any of these grammars.

• Double anchoring (definition 3): this requires
that for each nonterminal we have some repre-
sentative structures that are generated only by
those nonterminals.



• Local unambiguity (definition 5): a weak con-
dition on the ambiguity of the grammar.

• Completeness: the requirement that all pro-
ductions that are valid either are in the gram-
mar or can be derived from other productions:
definition 7

We define the classPr to be the set of probabilis-
tic grammars ⟨G; �⟩ where G satisfies the condi-
tions above, and where � is a top down parameteri-
sation of finite expected length.2 We claim that the
algorithm is a consistent estimator forPr, as stated
in the following theorem.
Theorem 2. For any ⟨G∗; �∗⟩ ∈ Pr for any � >
0, � > 0, there is an N such that if the grammar
is provided with at least N samples then it out-
puts a probabilistic MCFG ⟨Ĝ; �̂⟩ such that, with
probability at least 1 − �, Ĝ is isomorphic to G∗
and for all productions � in the original grammar
|�∗(�) − �̂(�̂)| < �, where �̂ is the production in Ĝ
isomorphic to �.

Proof. (Sketch)
The backbone of the proof is Theorem 1; here

we just need to show that we can derive this proba-
bilistically. The outline of the proof is that we make
a series of assumptions that will hold probabilisti-
cally. We can then bound the probability of an error
in each case by some fraction of �; using a union
bound we can then bound the probability of any
of them being false. Let D be the set of observed
strings.

• We assume every element of the original al-
phabet occurs in some string in D.

• We assume that the Dyck pairs of the language
are equal to the Dyck pairs of D.

• We assume that for every two Dyck pairs a,b
a► ⊆ b► iff �̂(a→ b) > 0.

• We assume that if a is a 1-anchor and b is any
other terminal, then a► ⊆ b► iff �̂(a → b) >
0, and b► ⊆ a► iff �̂(b → a) > 0.

Under these assumptions, the nonterminals in the
hypothesis grammar will correspond to the original
nonterminals where a corresponds to A iff a► =
(G∗, A).

• We assume that for every possible production
�; � is valid iff �̂(�) > 0.

2For all nonterminals A, I(A) = 1 and O(A) is finite.

• We assume that for every possible production
� that does correspond to a production �∗ in
the original grammar: |�̂(�) − �(�∗)| ≤ �′.

Under these assumptions, we will construct
only the productions that are valid and non redun-
dant, and the convergence of the parameters to
the bottom-up parameters follows. We can then
show that the conversion to the probabilistic MCFG
gives bounded errors using some elementary analy-
sis.

The conditions stated are merely sufficient condi-
tions for the learnable class: the actual class learned
is larger. For example the finite language {a} is not
problematic, but violates the requirement that each
dimension 1 nonterminal has two anchors.
9 Discussion

First, note that the strings themselves are enough
to infer the "movement" structure but only when
there is a fairly explicit clue in at least some of the
strings that exhibit this structure. Secondly, well-
nestedness (Kuhlmann and Möhl, 2007; Kanazawa
et al., 2011) seems to make things a lot simpler; this
tends to support Kanazawa et al. (2011)’s arguments
for well-nestedness as a condition onmildly context-
sensitive language formalisms to go with the pars-
ing efficiency arguments (Gómez-Rodríguez et al.,
2010) and the corpus based arguments of, among
others, Kuhlmann and Nivre (2006). Note that for
example MIX (Kanazawa and Salvati, 2012) is not
in the class of languages defined; the strong learning
classes are much more restricted in linguistically
significant ways that the weak learning algorithms
considered in Hao (2019).
Finally, we don’t use the additional MCFG ma-

chinery only in those cases where it is strictly re-
quired. Rather some context-free languages, and
indeed even some finite languages will have nonter-
minals of dimension 2; in this approach, all long dis-
tance dependencies must be handled by the mildly
context-sensitive part even if they could be handled
by some regular or CFG component.

The plugin estimators are computationally trivial
but very slow to converge: but this can be improved
using standard NLP techniques as is shown by Clark
and Fijalkow (2020). The algorithm is relativised
to a set of admissible production types  . It is
not the case that increasing the set of types will
strictly increase the set of grammars learned: typi-
cally there will be some languages/grammars that



will no longer be complete in the larger class. This
approach then defines a family of different learnable
classes.

The approach is quite close to the (weak) primal
distributional learning approach for MCFGs devel-
oped in Yoshinaka (2010).

Language Acquisition The learning model here
is highly idealised: the learner only has access, pas-
sively, to a sample of strings generated from the
grammar. The child learner of course normally
has access to much additional information derived
from the situational context via other modalities,
and additionally is an active participant, being able
to interact and produce utterances of their own. The
model is therefore highly pessimistic in the assump-
tions about the information available to the child;
the positive result we are able to obtain in this model
is thus correspondingly strengthened. Nonetheless,
the classic term, the primary linguistic data cor-
rectly highlights the importance of this data in lan-
guage acquisition since it is the only data source that
is essential in the sense that when it is unavailable,
language acquisition fails, see Clark and Lappin
(2011) for discussion. At least in the early phases
of language acquisition, this seems a reasonable
assumption. However when we consider the acqui-
sition of mildly context-sensitive grammars as we
do here, we are considering fairly subtle properties
of adult syntax which may only emerge later.
The anchoring condition is clearly unrealistic:

natural languages to a certain extent have one di-
mensional anchors but they simply don’t have the
two dimensional anchors at least if we consider ter-
minal symbols to be undisambiguated sequences
of acoustic features. But the model we use here
does not rely on this assumption about the terminal
words. In parameter setting models of language ac-
quisition (Yang and Roeper, 2011) it is common to
assume that the input is a sequence of more abstract
grammatical categories. If we consider the input
data then to be sequences of some sort of shallow
chunks, or non recursive phrases, then the double
anchoring assumption starts to seem more realistic.
In summary, from a modeling perspective it is a
bit naive to attempt to model all of syntax learning
using only the strings as input, even if it is cleaner
from the mathematical perspective we adopt in this
paper: some additional information derived from
semantic constraints is certainly active in language
acquisition.

Future work That said, there are no in principle
reasons why this approach couldn’t be extended to
grammars that are only partially or approximately
anchored. It’s more realistic to remove productions
like A(a, b) entirely, and introduce lexical items
only via dimension 1 nonterminals.

However a lot of the problems are becauseMCFGs
themselves are inadequate representationally: we
need a formalism with a little more structure. Alter-
natively one can learn some simpler constituent
structure, and then subsequently learn a richer
movement structure (Rogers, 2003) on top of that
as in Clark (2021b). Again this seems to require
the restriction to the well-nested class.
Unary rules like A(x) ← B(x) and the 2-

dimensional analogue, seem straightforward to in-
troduce but will add some algorithmic complex-
ity as in Clark (2021a). Moving to well-nested
MCFGs of higher dimension seems straightforward,
though the corresponding anchoring assumption
is still less plausible: the corresponding generali-
sation of a Dyck language is, in the dimension 3
case that given by S → SpSqSr, → �. In contrast
the extension to non well-nested MCFGs has many
technical difficulties; it is not clear whether this
approach can be extended beyond the well-nested
class. Moving from dimension 2 to dimension 3
seems particularly tricky then because the appro-
priate generalisation of the Dyck language, D3, is
poorly understood (Moortgat, 2014).
Conclusion This paper has presented a family
of algorithms for strong learning of a representa-
tive mildly context-sensitive grammar formalism,
using only strings as input, with good theoretical
guarantees. A realistic learning model, a repre-
sentationally adequate grammar formalism, and a
sufficiently strong convergence criterion: these are
all good, but the class of grammars is still too small,
and the grammars are too big, as the MCFG formal-
ism itself is not succinct enough.
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