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Abstract

Learning theory has frequently been applied to language acquisition, but discussion has largely

focused on information theoretic problems—in particular on the absence of direct negative evi-

dence. Such arguments typically neglect the probabilistic nature of cognition and learning in gen-

eral. We argue first that these arguments, and analyses based on them, suffer from a major flaw:

they systematically conflate the hypothesis class and the learnable concept class. As a result, they

do not allow one to draw significant conclusions about the learner. Second, we claim that the real

problem for language learning is the computational complexity of constructing a hypothesis from

input data. Studying this problem allows for a more direct approach to the object of study—the

language acquisition device—rather than the learnable class of languages, which is epiphenomenal

and possibly hard to characterize. The learnability results informed by complexity studies are

much more insightful. They strongly suggest that target grammars need to be objective, in the

sense that the primitive elements of these grammars are based on objectively definable properties

of the language itself. These considerations support the view that language acquisition proceeds

primarily through data-driven learning of some form.
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For many years, arguments from formal learning theory have been applied to the study

of language acquisition. Indeed, one of the founding studies of learning theory (Gold,

1967) was concerned in large part with the problem of constructing an adequate model

of language acquisition. Negative results derived from this study have been thought to

support a view of language acquisition according to which the class of possible human

languages is very limited, perhaps even finite (Bertolo, 2001). These arguments focus on

what we can loosely call information theoretic claims about the paucity of data—the pov-

erty of the stimulus (Clark & Lappin, 2011).1 These arguments have been criticized
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extensively by several authors before (Clark & Lappin, 2011; Johnson, 2004; Lappin &

Shieber, 2007). Similar criticisms apply to more recent versions of these arguments that

appeal to the more modern theory of PAC learning (Valiant, 1984). We will not discuss

these problems in detail in this article.

A second major problem with these information theoretic arguments is that they tend

to conflate two independent notions: the idea of a hypothesis class of languages, and the

notion of a class of learnable languages. The confusion of these two different ideas leads

to the unjustified conclusion that the latter class must be incorporated into the design of

the learning algorithm, and explicitly or implicitly represented as a feature of this algo-

rithm. The distinction between the two classes, although it had been recognized in the

learning-theory literature for some time (Jain, Osherson, Royer & Sharma, 1999; Zeug-

mann & Lange, 1995), became much clearer with the advent of learning procedures for

context-free languages, where the two classes must, for technical reasons, be distinct.

Once these notions are kept apart, it becomes evident why (un)learnability claims based

on information theoretic considerations are not well motivated.

The following simple example will bring out the difference between the hypothesis

class and the learnable class of languages for a learning algorithm. Consider the most

trivial learning algorithm—a rote-learning procedure A, which works as follows. For

every string s, which A receives as input it compares it with the set of strings S that it

has encountered previously. If s ∈ S, then A does nothing. If s 62 S, then A constructs

S0 ¼ S [ fsg. Clearly, this learner can only learn finite languages2—it does not general-

ize beyond the input. Suppose we have a learning model where there is a fixed bound on

how many examples that the learner can see: say for concreteness, it is only learning

from 1,000 examples. Now regardless of what reasonable measure we put on how this

learner converges or how these examples are picked or generated, it is clear that from

these examples that the learner cannot learn a language that consists of 1,000,000 strings.

If it had a few million examples, then it might be able to learn such a language, but

since it only has a few examples it cannot. Such large languages are not therefore in the

learnable class under this model. The learnable class will be some set of languages

whose size is below some threshold that depends on the precise details of how we define

the learning setup, as well as on the number of examples allowed, 1,000 in this case.

The hypothesis class though is just the set of all finite languages, which is vastly larger.

Crucially, this algorithm does not contain explicitly or implicitly any description of the

learnable class. We will return to this point later, and illustrate it with more interesting

examples.

This problem does not entail that formal learning theory has nothing to offer the study

of language acquisition. On the contrary, it is highly relevant. However, we argue that

the crucial problems are not information theoretic, as suggested in the Gold results.

Instead, they are complexity theoretic. By modeling the computational complexity of the

learning process, we can, under standard assumptions, derive interesting results concern-

ing the types of representations (or grammars) that are efficiently learnable. It is uncon-

troversial that the human capacity to learn is bounded by the same computational

limitations that restrict human abilities in other cognitive domains. The interaction of this
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condition with the complexity of inducing certain types of representations from available

data constitutes a fruitful object of study.

At present, this complexity problem admits only one type of solution; nearly all currently

known efficient algorithms for grammar induction apply the same basic principles (Clark,

2010c). The grammars/representations are based on objectively observable features of the

language itself. To the extent that we construct learning algorithms that accord with this

requirement, we can achieve efficient learning for comparatively rich classes of expressive

grammars. This approach offers the prospect of a computationally viable account of lan-

guage acquisition that is based on general data-driven procedures for grammar induction.

For purposes of this discussion, we restrict ourself to the case of syntactic learning—
grammar induction in a narrow sense. This is a significant idealization, as the child does, of

course, learn much more than this. He/she learns, inter alia, to associate semantic interpre-

tations, morphological structures, and phonological + phonetic representations to input

strings. In addition, the child has access to much richer sources of information than the

ones we consider here—the child observes utterances in a situational context and crucially

the child can interact with his/her caregivers both linguistically and nonlinguistically, as

well as with the environment. By limiting ourselves to syntax we can formulate the mathe-

matical problems of complexity in acquisition in a tractable way. We do not have the for-

mal resources to say anything interesting about the larger context of language acquisition.

However, we will later briefly consider the problem of learning the syntax–semantics inter-

face.

We will adopt the following standard definitions from formal language theory and (the

early years of) generative grammar. We assume that we have a finite set of words, which

we denote by Σ. A (formal) language is a subset of strings of finite length over Σ. We

denote languages by L, with various subscripts where appropriate. This language will

correspond to the set of grammatical sentences from some language. Drawing a sharp line

between grammatical and ungrammatical sentences is fraught with methodological issues

that we pass over here. These languages are, in general, infinite. Therefore, we need to

consider finite representations or generative devices, which we call grammars, without
thereby committing ourselves to any claims concerning their formal encoding. We are not

assuming that these grammar are, for example, phrase structure grammars of a particular

type. We consider deterministic finite automata, arbitrary programs, and so on, to be

grammars, subject only to the constraint that they define for any string whether it is in, or

out of the language being defined. We use G, again with appropriate subscripts, to denote

these “grammars.” In Chomsky’s terms, these grammars might be called I-languages

(although this expression is also used in different contexts), whereas what we call lan-

guages correspond to E-languages.

We assume that we have a language acquisition device (LAD), which takes as input

some data and outputs a grammar of some kind. The input typically consists of a finite

sequence of examples drawn from the language L, but we also consider cases where the

learner has access to a more powerful source of information.

In the real world, the LAD is intended to correspond to some part of the brain/mind of

the child. The input is the primary linguistic data, which consists of the sequence of
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sentences generated by the adults in the child’s environment, during the years of language

acquisition. The output is a grammar for the language that the child is exposed to. We

take the LAD to be an algorithm, and we study the general properties of these algorithms

using the mathematical tools of computer science. Clearly, such mathematical results can

specify boundary conditions on learning procedures. Demonstrating the existence of algo-

rithms that correctly perform the learning task under specified conditions offers a possible

explanation of the way in which children acquire language. Conversely, showing the

mathematical impossibility of an algorithm that implements this task will rule out certain

types of explanation. Although the nature of language acquisition is clearly an empirical

question, this sort of mathematical analysis is helpful—a conclusion that is uncontrover-

sial in cognitive science.

The goal of computational learning theory applied to language acquisition is to apply

mathematical analysis to the observed behavior of the LAD to shed light on its formal

properties, and, by extension, to provide insight into the process of language acquisition.

Notice how different this enterprize is from standard approaches to machine learning,

where we are interested in designing algorithms to perform various learning tasks, or we

wish to prove learnability results for such algorithms. In the current case, we have a

device, the LAD, which we observe achieving a learning task. We are concerned to use

our analytical tools to model its internal structure. This is reverse engineering, rather than

software engineering. The difference profoundly alters the explanatory task.

1. The classic arguments from Gold-style learning

We first consider the classic Gold model of identification in the limit from positive

data alone, as defined in Gold (1967). Gold considered a number of different models of

learnability. We address only the one that is most relevant to language acquisition. Learn-

ing proceeds incrementally. The LAD is presented with an infinite sequence of unlabeled

examples. At each step, the learner receives an example and must output a hypothesis.

Informally, we say that the learner succeeds in learning the language if it converges (in a

sense to be made precise shortly) to a correct hypothesis for every appropriate sequence.

To give this some technical content we need to specify the convergence criteria, the set

of appropriate sequences of examples, and a suitable definition of a correct hypothesis.

To take the last item first, we say that a hypothesis—in this context, a grammar—is cor-

rect if it defines the correct language. It must be extensionally correct. So the Gold model

is concerned largely with weak learning—the learning of the set of strings—rather than

strong learning. The latter consists in learning the grammar that assigns the correct set of

structural descriptions to strings. We return to this point later.

The convergence criterion for a given sequence requires there to be a finite point at

which the hypothesis that the algorithm generates is correct, and that after this point the

hypothesis does not change. This condition is equivalent to the requirement that the lear-

ner must only change its mind a finite number of times, and the final hypothesis must be
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correct. Note that the hypothesis must be exactly correct. The set of strings defined by

the hypothesis needs to be identical to the one generating the examples.

The second crucial element of this model concerns the sequence of examples. Every

child receives a different sequence of examples. Clearly, the examples have to depend in

some way on the language that the child is trying to acquire. The Gold model uses the

following minimal definition: a presentation of a language L is a sequence of elements of

L (sentences in this case), such that only elements of L occur in the sequence and every

element of L occurs at least once in the sequence. In this model, we say that a learner

identifies in the limit a language if, on every possible presentation of the language, the

learner converges to the target. A learner identifies in the limit a class of languages if,

for every language in the class and for every presentation of that language, it converges

to the right language.

A superfinite class of languages is any class of languages which contains all finite lan-

guages and at least one infinite language—that is to say any proper superset of the class

of finite languages. The classes of regular languages, context-free languages, and so on,

are all, by this definition, superfinite. The most influential result in Gold’s article is the

following. Gold showed that if a language class is superfinite, then it is not identifiable in

the limit from positive data. As a consequence, none of the classes in the Chomsky hier-

archy are learnable in this model.

One of the problems of this paradigm (lucidly pointed out by Johnson, 2004, among

others) is that the requirement to learn under every possible presentation is too strong.

The presentations are unrestricted. The learner must be able to learn even when the pre-

sentation is generated by an adversary. Because the adversary can defer key examples

indefinitely, it is very hard for the learner to accurately infer which sentences are ungram-

matical—although every positive example must appear eventually, there is no limit to

when it appears. Thus the absence of an example, or set of examples, from a given finite

sequence does not allow the learner to conclude that those examples are ungrammatical.

Of course, from the point of view of the Gold learning paradigm, this unrealistic assump-

tion is counterbalanced by another, equally unrealistic assumption, that the learner may

learn as slowly as it likes, as long as it eventually converges. The conjunction of these

two assumptions means that the Gold model is mathematically not trivial, but it renders it

a poor model of language acquisition.

Under a more realistic, probabilistic learning model, this problem disappears.3 Positive

examples alone provide enough information, assuming that they are generated randomly

and that the distribution of examples is not pathological. The mathematical results that

establish this conclusion range from the famous, but limited early result of Horning

(1969) to various extensions and improvements proposed in Angluin (1988) and Chater

and Vit�anyi (2007). Some of these systems use inefficient algorithms for very large clas-

ses of languages, while others construct efficient learning algorithms for more restricted

classes, as in Clark (2006), Clark and Thollard (2004), Palmer and Goldberg (2007), Ron,

Singer, and Tishby (1998). On this approach, the frequency of occurrence of the strings

provides an indirect form of negative evidence that greatly enhances the amount of data

available to the learner.
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We are focusing on another aspect of the argument, which has received much less

attention than the problem of positive versus negative evidence. A key point in the Gold

paradigm, and in models of learnability generally, is that learnability is a property of clas-

ses of languages, rather than of individual languages. Consider the following trivial LAD,

which has a particular grammar G0 encoded within it. This LAD completely ignores the

input, and simply outputs G0 in all cases. Clearly, in a vacuous mathematical sense, this

is a learning algorithm for the language LðG0Þ, although no learning, in the normal sense

of that term, has taken place. It is hard to rule out these trivial algorithms when formaliz-

ing learnability. Therefore, learnability is always formalized in terms of classes of lan-

guages or grammars.

This purely formal idea has led to a concern with classes of languages that are learn-

able under a particular paradigm, rather than with the LAD itself. However, this perspec-

tive requires an additional move that is never made explicit. Suppose we know that L is

the class of languages that is learnable by some LAD A. We need to determine what this

fact allows us to infer about A. A naive answer would be that A must have “knowledge”

of L. In fact, this inference is unsound, although it is widely accepted.

We see the roots of this misconception even in Gold (1967). Concerning one of his

candidate explanations of language acquisition, Gold suggests that it may be the case that

The class of possible natural languages is much smaller than one would expect from

our present models of syntax. That is, even if English is context-sensitive, it is not true

that any context sensitive language can occur naturally. Equivalently, we may say that

the child starts out with more information than that the language it is presented is con-

text-sensitive.

The final sentence in this quote, is, as we shall see, incorrect. This idea crops up

repeatedly in discussions of Gold’s theorem in the context of language acquisition. Pick-

ing a representative example, Matthews (2001) claims that one of the ways in which a

learner can succeed is when the class of natural languages is suitably constrained, and

learners are knowledgeable of these constraints and furthermore exploit this knowledge in

the course of language acquisition.

We begin our analysis of the misconception implicit in this view by defining our terms

more precisely. Suppose we have some fixed LAD, which we denote by A. This is a

function from samples to grammars. The learnable class of A, LðAÞ, is the set of all lan-

guages L such that A identifies L in the limit, from every possible presentation of L. We

define the hypothesis class of A, HðAÞ, to be the set of all languages that A may hypothe-

size for any possible input. Clearly, both of these classes are well defined for any fixed

A, although it may be difficult (or impossible) to actually determine LðAÞ for a particular

choice of A. Equally clearly, these two classes are different. If A can learn a language L,
then it must be able to output a representation for L, and so the languages defined by

HðAÞ must include LðAÞ. But crucially, these classes need not and often will not coin-

cide.
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There are two important respects in which these two classes may differ. The first and

most direct way is that during the process of learning, the learner may hypothesize

languages that it is not guranteed to learn. The second is that the learner may consider

languages of unbounded complexity, while it may only be able to learn languages whose

complexity is below some threshold. Let us start by giving a very simple artificial exam-

ple of the first type of difference. We know that the class of context-sensitive languages

is not identifiable from positive data alone. We define a simple learner whose hypothesis

class is the class of all context-sensitive languages, but where the learnable class is just

the class of all finite languages. This learner assumes that the input data are ordered in a

helpful way with shortest strings first—that is to say all of the strings (if any) of length 1

occur before the strings of length 2 and so on. Therefore, when the learner sees the first

string of length k, where all previous strings have been of length less than k, it assumes

that any string that has not occurred so far, of length less than k, is not in the language.

At this point, it changes its hypothesis to be the smallest context-sensitive grammar that

includes all of the strings of length less than k that it has seen so far, and excludes all of

the strings of length less than k that it has not seen. Now of course, the assumption that

the learner makes is incorrect—in the Gold model, only some presentations will have this

property. So we can alter the learner so that if it sees a shorter string appearing after a

longer string, then it will revert to a more primitive algorithm, a rote learner, and output

merely a hypothesis that consists just of the list of strings it has seen so far. Now it is

clear that the learnable class in this case is the class of finite languages, as the criterion

for convergence is that the algorithm must learn for every possible presentation of the

language, which will include some that are not length ordered. The hypothesis class is

the class of all context-sensitive languages, and it is easy to verify that for every context-

sensitive language there are presentations of the language on which the learner will iden-

tify that language—namely those which are length ordered. Therefore, the hypothesis

class—the class of context-sensitive languages—and the learnable class—the class of

finite languages—differ significantly, the former properly including the latter.

For a less artifical example, consider the simple learner described in Clark and Eyraud

(2007). This learns the class of substitutable context-free grammars (CFGs) from

positive data alone. Substitutability is a simple closure property of languages—if lxr and

lyr and l′xr′ are in the language, then so is l′yr′, for any strings l,r,x,y,l′,r′. It is possible to

prove that this property precisely characterizes the learnable class of languages of that

algorithm under the identification in the limit paradigm. However, this property is, in

general, undecidable for arbitrary context-free grammars. As far as we know, it is not

possible to construct algorithms which limit their hypotheses to this class, while still

being efficient. Reasonable algorithms for learning substitutable CFGs must be able to

consider at least some candidate CFGs that are not substitutable. These will represent lan-

guages that are not learnable in the sense that they can be learned from all presentations,

but they will be languages that can be learned from some presentations.

Returning to our main concern, language acquisition, it is appropriate to consider the

interpretation of each of these two classes, and the relationship between them. LðAÞ
depends on the asymptotic behavior of the algorithm under infinitely many data sets. It
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depends not just on A, but on the learning model defined by Gold. If we consider a dif-

ferent learning model, perhaps one where the examples are generated stochastically, then

we might end up with a different class of learnable languages. It is more perspicuous to

write LðAÞ as LðA;GoldÞ—the class of languages learnable for A under the Gold para-

digm. This class depends not just on A, but also on the modeling assumptions that are

imposed by the Gold learning paradigm. But, it is entirely implausible to attribute knowl-

edge of this learning paradigm to the child, even implicitly.

HðAÞ, on the other hand, depends only on A. It is the range of outputs that A will pro-

duce for any input, and so it directly represents the biases of the learner. This is the class

that we need to identify to understand the design of A.
Keeping in mind this distinction between the hypothesis class and the learnable class,

we reexamine the arguments from Gold’s theorem on learnability from positive data.

Gold’s theorem tells us that the learnable class for a LAD A cannot be superfinite (and

similarly, more powerful negative results show that this class must be restricted in some

way). However, it tells us nothing at all about the hypothesis class of A. As HðAÞ con-

tains LðAÞ, knowing that the latter is small has no consequences for the former.

In particular, these results do not tell us, contra Gold (1967), that the learner must

restrict the hypothesis class in any way. Yang (2008) expresses the standard view, derived

from Gold.

Learning is not possible unless the hypothesis space is tightly constrained by prior

knowledge, which can be broadly identified as Universal Grammar.

Yang is correct in suggesting that the restriction on the hypothesis space, HðAÞ, is our
primary concern, but his claim that restricting this class is necessary to achieve learnabili-

ty is incorrect. The source of this misconception is not hard to identify. When proving

the proposition that an algorithm A1 can learn a class of languages L1, we need to prove

that LðA1Þ � L1. In this case, we are not interested in the situation where the learner is

given a presentation of a language that is not in L1. Moreover, to simplify the analysis

and make the proof easier, we tend to design an algorithm that is explicitly designed to

learn only languages in L1. In many cases, the learner can exploit this knowledge and

restrict the set of hypotheses to L1. An example is learning reversible languages (Ang-

luin, 1982), where it is easy to discern whether a given deterministic finite automaton is

reversible or not. This is a fact that can accelerate the learning process, and lead to a

shorter and more intuitive proof of convergence.

The confusion inherent in attributing knowledge of the learnable class to the algorithm

is exacerbated by a proof strategy called Identification by Enumeration (IBE). In this

proof strategy, we assume that the learner is equipped with an enumeration of the gram-

mars in the learnable class G1;G2;. The learner then returns the first element in the

enumeration that is compatible (in a suitable technical sense) with the data seen so far.

This is a useful method for proving learnability of various classes. However, it is just one

of several possible approaches, and it works only for some cases.4 IBE learners are a type

of learner where the knowledge of the learnable class is represented in a partcularly
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explicit way, and is equal to the hypothesis class. The fact that there are some learners

for some classes that employ IBE and explicitly restrict their hypothesis class to the

learnable class does not motivate the conclusion that all learners operate in this way.

Other learners may explicitly represent a hypothesis class that is significantly larger than

the learnable class, or implicitly define a larger hypothesis class without explicitly repre-

senting it. The same confusion affects other learnability frameworks, specifically probabi-

listic learning paradigms like PAC learning (Valiant, 1984).

Controlling the size of the hypothesis class, or capacity control as it is sometimes

called, is one way to achieve generalization, but there are other methods that use much

larger and less constrained hypothesis classes. For example, k-nearest neighbor classifiers
use hypothesis classes which are unbounded in terms of their capacity5 while being

asymptotically optimal in many cases up to a constant factor (Cover & Hart, 1967).

This returns us to a point that we made earlier. The main goal of computational learn-

ing theory as it is standardly deployed is to understand concepts like generalization so

that they can be used to design better learning algorithms (e.g., the development of Sup-

port Vector Machines, Cristianini & Shawe-Taylor, 2000). These tools cannot be applied

in reverse to draw strong conclusions about the nature of the hypothesis class. So, the

theoretical analysis of PAC learning produced the result that concept classes can be

learned if and only if they have finite VC dimension, one of the great achievements of

computational learning theory. But, this result does not support an inference to the con-

clusion that the hypothesis class must have finite VC dimension.6 A particularly clear

illustration of this point is the class of finite languages, where the representation of each

such language is simply a finite list of its grammatical sentences. A trivial rote-learning

algorithm exists for this class—one that simply memorizes each sentence that it observes.

Such an algorithm need have no prior bound on the cardinality of the language. Note,

however, that the class of finite languages has infinite VC dimension, rendering it a PAC-

unlearnable class. But, for any bounded subclass of the finite languages which has finite

VC dimension and is therefore learnable, a trivial rote learner will succeed. In this case,

the hypothesis class of the learner is clearly the class of all finite languages, and the

learnable class must be very much smaller. It follows that any inference from the bound-

edness of the learnable class to the putative boundedness of the hypothesis class does not

hold.

The missing premise needed to sustain this inference is the claim that the hypothesis

class is restricted to the learnable class. Learners with this property have been studied

before. In the inductive inference community, they are known as prudent learners (Fulk,

1990). We formulate this as the Prudent Learner Premise (PLP): the LAD is a prudent

learner. It only considers hypotheses that represent languages within the learnable class

under the Gold paradigm. In this case, we do obtain the identity LðAÞ ¼ HðAÞ.7
Although the PLP is ultimately an empirical premise, it would be difficult to find experi-

mental evidence for it. To support the PLP we need to show that under every possible

input, the hypothesis considered by the child is in the learnable class. This involves dem-

onstrating that all of the intermediate states of the child’s knowledge represent languages

that could be learned under all presentations. Simply looking at patterns of child speech
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will not do: child language production is not a direct reflection of competence as mea-

sured for example in comprehension (Benedict, 1979; Hendriks & Koster, 2010).

Moreover, the PLP implicitly incorporates the assumptions of the Gold model. As we

noted above, the reality of the language-acquisition environment falsifies these assump-

tions. So, for example, if the input is the sort of pathological presentation allowed by the

“adversarial” Gold model, then it is exceedingly rare and unlikely to be produced from

the sorts of natural distributions that children are typically exposed to.8 Therefore, evi-

dence from the behaviour of actual children in natural learning environments is insuffi-

cient to support the PLP.9

From a formal point of view, there are also good reasons for thinking that the PLP

does not hold. As we observed previously, in many algorithms for context-free learning,

the learnable class is undecidable (Clark & Eyraud, 2007). For an arbitrary context-free

grammar it is not, in general, possible to compute whether it is in the learnable class or

not, and as a result it may not be possible for the learner to restrict the hypothesis class

to the learnable class.

It should be clear, then, that arguments which depend on the PLP do not yield signifi-

cant insights into the actual process of language acquisition. To obtain such insight, we

need to turn to another branch of learning theory for constraints that may help us to

understand the boundary conditions on the design of the learner. We need to examine the

computational complexity of learning.

2. Computational complexity

The study of computational complexity supplies a second source for negative conclu-

sions concerning learnability. Fairly soon after the study of complexity began, results

appeared suggesting serious computational problems with learning (Gold, 1978), and

work since then has shown significant difficulty with learning classes of representations

in the Chomsky hierarchy, under a variety of learning models (Abe & Warmuth, 1992;

Angluin & Kharitonov, 1995; Kearns & Valiant, 1994). These results indicate that even

in situations where there is sufficient data for the learner to identify the correct hypothe-

sis, finding it may be a computationally intractable task (i.e., NP-hard or intractable under

other complexity assumptions, typically derived from cryptography).

It is uncontroversial that humans, adults or infants, have limited computational

resources. Rooij (2008) state this as the Tractable Cognition Thesis:

Human cognitive capacities are constrained by the fact that humans are finite systems

with limited resources for computation.

This restriction on computational power applies to every aspect of cognition. In the

domain of language, it will limit the power of the formalisms that we can acquire or use.

Giving this thesis technical content involves making assumptions about an appropriate

model of computational tractability. Rooij (2008) argues for fixed parameter tractability
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(FPT), a more sophisticated and nuanced version of the standard asymptotic worst-case

analysis used for the last 50 years. Combining the Tractable Cognition Thesis, and the

variety of negative results based on computational complexity for the learnability of vari-

ous representations, we arrive at a serious constraint on possible models of language

acquisition, that is very different from the information theoretic constraints we examined

earlier.

But, if learning classes of representations such as the class of deterministic finite state

automata (DFAs) in Kearns and Valiant (1994) is so hard, then we find ourselves in an

apparent paradox. Children do, in fact, learn target representations that are much more pow-

erful than DFAs. Indeed, the Kearns and Valiant (1994) result concerns acyclic DFA—
which generate only finite languages!

This paradox is only apparent. The fact that a problem is computationally hard does

not entail that all instances of the problem are hard. Often, only a small proportion of the

class actually presents computational difficulties. For example in 3-SAT, many problems

either have so many constraints that they are clearly unsolvable, or they have so few that

they admit of multiple solutions. It is only when the number of constraints falls within a

narrow range that the problem is hard. As Impagliazzo (1995) says, in a well known

overview article:

There is a large gap between a problem not being easy and the same problem being

difficult. A problem could have no efficient worst-case algorithm but still be solvable

for “most” instances, or on instances that arise in practice. Thus a conventional com-

pleteness result can be relatively meaningless in terms of the “real life” difficulty of

the problem, since two problems can both be NP-complete, but one can be solvable

quickly on most instances that arise in practice and the other not.

These considerations suggest a solution to our conundrum. We need to identify the

subset of instances (grammars, say) for which the learning problem is tractable. The neg-

ative learnability results that we discussed at the beginning of the section do not, in them-

selves, indicate whether this subset is large or small. Is it the case that nearly all DFAs

are learnable, with only a few pathological exceptions? Or are DFAs in general hard to

learn? The main issue that we are addressing here is how to answer this question for

richer families of representations that are suitable for natural language description (as it

is clear that DFAs are inadequate models of the syntax of natural languages).

Let us begin with the learnability of regular languages, as this part of the theory of

learning is well understood (although far from complete). There are, broadly speaking,

two kinds of representation for this class of languages, where these have sharply different

learnability properties. The first is the class of deterministic finite state automata (DFA)

and the second is the larger class of general nondeterministic finite state automata (NFA).

Every DFA is also an NFA, but NFAs are more expressive. Although both kinds of auto-

mata define the same class of languages, the regular languages, the class of NFAs often

allow for a more compact representation (Meyer & Fischer, 1971).
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The learnability properties of the two classes are very different. For DFAs, if we

have a sufficiently good source of information—a minimally adequate teacher—then

efficient learning algorithms can be constructed, that are polynomial in the size of the

representation and the data (Angluin, 1987). In this learning paradigm, the learner is not

purely passive, but it can interact with the teacher by asking membership queries. The

learner can ask whether a particular string is grammatical or not. Without such a source

of information, if the learner is merely passively observing sentences, then the Kearns

and Valiant (1994) results show that learning is hard, even when the data consists of both

positive and negative examples.

By contrast, even with a teacher who can answer these queries, the class of NFAs is

not efficiently learnable (Angluin & Kharitonov, 1995). We can now see one of the

advantages of this complexity-based analysis. Rather than concerning ourselves with

broad and abstract criteria for learnability, specified in terms of classes of languages, we

focus on the choice of representation class and the consequences of this choice for possi-

ble learning algorithms. This approach yields direct insight into the nature of the LAD.

Specifically, it illuminates the types of representations that the LAD might produce, and

the nature of the algorithms it might employ.

Information theoretic results of the Gold type, when applied to the the classes of the

Chomsky hierarchy—the regular, context-free, and context-sensitive languages—either

imply that all three of them are learnable, as in the case for learning from positive and

negative data, or that none of them are learnable, as in the case of positive-only learning.

Similarly, any finite collection of languages can be learned from positive-only data (Gold,

1967). But, this result tells us nothing about what these languages are or how they might

be represented. Other infinite learnable classes, however, may run orthogonally to the

Chomsky hierarchy, consisting of some but not all finite languages, and some infinite lan-

guages. Shinohara (1994) is perhaps the most powerful of these results, but again the class

of representations10 is so large that it gives no guidance into what they might be. It is

important to note that these results are not based on computationally efficient algorithms.

It is only when they are augmented with constraints on computational complexity that

they start to provide some more detailed insight. The result in Angluin (1982) offers a

more interesting perspective. It tells us that learnability can depend on particular proper-

ties of the representations themselves. Determinism is the basis for learnability of DFAs.

This idea is developed in a slightly different way for richer formalisms. In contrast, the

negative results for NFAs (Angluin & Kharitonov, 1995) seem to indicate that the greater

compactness of nondeterministic representations causes complexity problems.

Given the limited descriptive power of DFAs, it is important to see how these insights

can be generalized to more powerful formal systems. The crucial learnability feature of

DFAs, we argue, is not their determinism per se, but the deeper property of their objec-
tivity. An automaton is objective in this sense if its states satisfy certain criteria of identi-

fiability and distinguishability relative to distributional patterns in a data set. The states in

the minimal DFA for a regular language correspond to equivalence classes of strings

under the Myhill–Nerode congruence. Determinism follows from this property. We can
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generalize objectivity to achieve important positive learning results for more powerful

grammar formalisms ( Clark, 2006, 2010b; Clark & Eyraud, 2007; Yoshinaka, 2011).

Objectivity is naturally extended to context-free grammars whose nonterminals corre-

spond to congruence classes under a different congruence relation, the relation of

complete mutual substitutability, first studied by distributional linguists in the American

structuralist tradition (Chomsky, 1959; Harris, 1954; Wells, 1947). This has given rise to a

variety of simple algorithms using this basic representational assumption (Clark, 2010a;

Clark & Eyraud, 2007). As DFAs and NFAs can be converted easily to context-free gram-

mars, we can consider the relationship more precisely. The MAT learner in Clark (2010a)

can learn all regular languages, so we can consider the context-free grammars output by

this algorithm as another representation for regular languages. These grammars are deter-

ministic in a particular sense—for any string, there is only one nonterminal that can gener-

ate that string, and there cannot be two productions with the same right-hand side. Thus,

the grammars have a certain bottom-up determinism. Moreover, the congruence classes

can be used to define an automaton, and this automaton will be deterministic.

Yoshinaka (2011) uses this approach to move to the next stage, when he demonstrates

that a class of mildly context-sensitive grammars can be efficiently learned by algorithms

designed on the basis of objectively identifiable nonterminals. This is a subclass of Multi-

ple Context-Free Grammars (Seki, Matsumura, Fujii & Kasami, 1991), which have been

shown to be equivalent to Minimalist Grammars (Michaelis, 2001; Stabler, 1997) under

certain conditions. While the subclass learnable by the algorithm in Yoshinaka (2011) is

extremely limited, this is a highly suggestive result. It points to an interesting confluence

between the types of grammars considered to be adequate by linguists, and the classes of

representations learnable through distributional means.

The use of congruence classes in these algorithms, although mathematically convenient

and close to the original conceptions of structuralism (Harris, 1954, 1955) is linguistically

inadequate, as (Chomsky, 1955, 1959) realized early on. The obvious fact is that words

are ambiguous and differ from each other in numerous subtle ways. Thus, the require-

ment of exact identity of distribution is far too strict to impose on the syntactic categories

of a natural language. It entails that the congruence classes consist only of individual

words or sequences.

It is possible to modify the models. Rather than partitioning words and strings into

separate nonoverlapping classes, it is more natural to separate them into classes that may

overlap and include one another, an assumption that more faithfully represents the reality

of syntactic and lexical categories. Clark (2010c) shows that this general approach can

also be applied to a family of lattice-based grammars, which use symbols (nonterminals)

that are no longer atomic, as in CFGs, but are specified as sets of features arranged in a

hierarchy (a lattice in this case). This gives them something of the flavor of feature-

based representations such as GPSG (Gazdar, Klein, Pullum & Sag, 1985) and HPSG

(Pollard & Sag, 1994). The features used in the lattice-based grammars are very simple

shallow distributional features. They are different in kind from the standard notion of a

syntactic feature. However, traditional syntactic features can be modeled as bundles of

these more primitive distributional features. These approaches, while no longer
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deterministic, are still learnable because the primitive elements of the model correspond

to a canonical structure of the language, a structure that rather than being arbitrarily

imposed on the language, is unique and well defined. It is based on intrinsic properties

of the language itself.

Again the common theme here is objectivity. As has been noted by many linguists over

the years, grammars are radically undetermined both by the primary and secondary lin-

guistic data (Chomsky, 1966, p. 22). By adopting objective representations (in the narrow

sense intended here), we at least partially circumvent the problem of underdetermination

that infects linguistic theory. In restricting ourselves to representations that are based

directly on the observable data, we constrain the process of theory formation significantly.

What conclusions about the LAD can we draw from these positive learning results?

One claim that is not justified by these results, and which we should therefore resist, is

that the learner must have knowledge of which languages will be learnable. For reasons

similar to those that we gave in our criticism of the Gold paradigm, we have no grounds

for attributing to the LAD knowledge of the properties of the target class that guarantee

its learnability.

We can relate this debate to the Bayesian paradigm, which enjoys considerable popu-

larity within current work in cognitive science (Griffiths, Kemp & Tenenbaum, 2008). In

Bayesian modeling, a prior over a hypothesis space is explicitly specified for the learner,

who uses a general-purpose inference scheme (typically a Markov Chain Monte Carlo

method) to infer either the most likely grammar, given a data set, or, alternatively, a pos-

terior distribution over the set of possible grammars. These learners are to a certain extent

ideal learners—under mild assumptions they are guaranteed to converge optimally, given

unlimited computation, to the right answer for any grammar in the hypothesis class. In

this case, we can identify the hypothesis class as the set of all hypotheses with nonzero

prior probabilities.

In many cases, the hypothesis class is very large, generally corresponding to a given

level of the Chomsky hierarchy (Johnson, Griffiths & Goldwater, 2007). We know per-

fectly well, from the negative learnability results cited above, that the learning algorithms

will not converge within some fixed time limit for every problem in the given class. For

the hard problems, they will fail to converge. Fixing a limit on the amount of computa-

tional time that the learner is allowed to use, thereby converting the ideal learner into a

real computational system, will create a learnable subclass of the hypothesis class.

Exactly which subclass depends on the details of the particular sampling algorithm that is

used, and studying the implications of particular choices could be a promising area of

future research. So with Bayesian methods applied in this way, nonideal learners again

have a learnable class that is significantly smaller than the hypothesis class which is

explicitly represented. The learnable class here arises out of the interaction between a soft

set of constraints on hypotheses, in the form of the prior, and computational constraints

on the inference procedure. The end result will be a class of languages that may and

indeed must be very constrained and limited—but those limitations need not be part of

the prior constraints themselves, and as a result cannot legitimately be considered as a

property of the learner itself.
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The standard solution to learnability problems within mainstream generative grammar

has been the Principles and Parameters model (Chomsky, 1981), which hypothesized that

the learner had innate knowledge of a finite class of grammars parameterized by a small

number of binary parameters. It was thought that the finiteness of the set of possible

grammars trivialized the learning problem. In the light of the complexity problems dis-

cussed here, where the problematic classes are typically finite classes of simple gram-

mars, specified by a finite set of binary parameters, it should be clear that such finiteness

assumptions do not completely solve the learning problem (Niyogi & Berwick, 1996).11

Fodor and Sakas (2004) remark cogently that

parameter setting as a process has become a source of problems rather than solutions.

The computational arguments make it clear that something else other than finiteness is

necessary for learnability; finiteness, which was thought to be of central importance for

learnability turns out to be neither necessary nor sufficient.12

These considerations strongly motivate a shift in emphasis away from efforts to define

the class of possible human languages through identification of learnable language clas-

ses, to the exploration of types of representations that are efficiently learnable because of

their objectivity. This approach also offers a methodological advantage. Regardless

of how one regards the status of specific linguistic theories and grammar formalisms, it is

clear that we lack the necessary evidence to determine the syntactic structures that are

actually encoded in our brains (and we will continue to be in this position for the foresee-

able future).13

Before concluding, we should address at least one factor that we have neglected so far

—the issue of bounds on memory. Just as the learner has limited computational resources

in terms of the number of computational steps that it can apply, so too does the learner

have limited storage capacity. Considerable research has been directed at the effect in

various contexts of limiting the number of examples that a learner can store (Fodor & Sa-

kas, 2005; Nowak, Komarova & Niyogi, 2001; Wexler & Culicover, 1980). Indeed, in

many such models a completely memoryless learner is considered—a learner that cannot

remember any preceding utterance. First, is important to distinguish two senses of the

word “memory.” In the abstract computational sense, this merely refers to the storage

ability of the abstract computer; the infinite tape of the Turing machine, whereas in the

psychological sense it tends to be used for short-term or long-term declarative memory

that is accessible to consciousness. While it is certainly true that children do not memo-

rize the complete linguistic data that they are exposed to, there is ample evidence that

children are extremely sensitive to the frequencies of occurrences of words and fragments

of words in the input. Furthermore, the total size of the linguistic data that the child is

exposed to, considered as a sequence of words or even phonemes, is tiny compared with

the estimated information storage capacity of the brain. A model that places some signifi-

cant bounds on the storage capacity of the algorithm seems for these reasons to be

empirically unmotivated. For more detailed discussion see (Clark & Lappin, 2011,

pp. 144–155).
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3. Weak and strong learning

One might object to the line of research we have been considering here as, at best, tan-

gentially relevant to linguistics. It is concerned largely with weak learnability, the task of

learning the set of strings in a language, rather than the acquisition of the mapping

between syntax and semantics mediated by appropriate structural descriptions (Berwick,

Pietroski, Yankama & Chomsky, 2011). We describe the latter task as strong learning, on

analogy with the distinction between weak and strong generative capacity (Miller, 1999).

The issue is rendered even more complicated by the fact that regular languages, espe-

cially as represented by DFAs, have no associated concept of strong learning. It was only

after positive learning results were achieved for classes beyond the regular languages that

we could properly formulate the question of strong learning. It is natural that we should

make progress in weak learning before strong learning, as strong learning is harder than

weak learning.

There are a number of different models for learnability in this context that depend on

the inputs that are available to the child. We assume a fairly standard architecture, where

a grammar generates structural descriptions that then generate independently pairs of sur-

face strings and semantic interpretations. Therefore, we have three classes of objects that

we might consider as input to the learner, either separately or in combination: the struc-

tural descriptions, the surface strings, and finally the semantic interpretations. These differ

in the degree of accessibility both to the linguist/native speaker, and to the child. The

child can observe the surface strings, imperfectly to be sure, because of limitations in

the perceptual system, noise and so on, but nonetheless directly. The child has, at least in

the early phases, no direct information about the meaning of a string. As its cognitive

abilities mature, and as its knowledge of the language increases, it becomes able to infer

the meaning of utterances from the situational context, partial knowledge of the syntax of

the sentence, and some knowledge of the speaker’s intentions. However, this is clearly

not happening until comparatively late in the language-acquisition process. On the other

hand, linguists and adult speakers know what the available interpretations for a given sen-

tence are, albeit without conscious access to the exact details of its semantic representa-

tion. Finally, neither the child nor the adult (nor the linguist) has knowledge of the

structural descriptions. They are theoretical entities that we hypothesize to explain

the relation between sound and meaning. Therefore, there are two relevant models for the

input to the child. Either the child receives only the surface string of words or sounds, or

the child receives a pair of the surface string and its meaning.14 When we consider the

output of the learning, algorithm again there are several different possibilities. One sensi-

ble, but limited model is the classic weak learning model, as discussed earlier—the lear-

ner is required to learn a grammar that generates the correct set of surface strings.

It may seem more plausible to consider a learning model where the learner is pre-

sented with pairs of surface strings and meanings or semantic interpretations, something

closer to the model considered in Wexler and Culicover (1980). The output will then be

a grammar, which can generate the set of grammatical sentences together with their
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semantic interpretations. Yoshinaka and Kanazawa (2011) take the first steps in showing

how distributional learning could operate in this model, using a very general formalism

called Abstract Categorial Grammars. While again still limited, this shows that algorithms

using the same approach proposed here can also apply in this richer framework.

It seems unlikely that the same assumptions will be appropriate for modeling the entire

process of language acquisition from birth to linguistic competence. Rather it is more

insightful to assume that later on in the developmental process, the learner starts to be

able to extract more semantic information from the environment, while at the beginning,

this ability is limited or nonexistent. There is a third possibility, which is that a learner

using only weak inputs, may nonetheless be able to infer some structures that are suitable

for providing an interface to semantics. This could be called weak–strong learning—the

input to the learner is weak (only surface strings), but the output must be strong (in the

sense of a grammar that defines an appropriate set of structural descriptions. To formalize

this, we need to define an appropriate type of structural description. Some research along

these lines is presented in Clark (2011).

4. Conclusion

We have argued that there are two main problems to be addressed in modeling the task

of language acquisition using the tools of learning theory. One is an information theoretic

problem concerning the available data that is closely related to the question of the pov-

erty of the stimulus, as it has traditionally been discussed. The second is a complexity

theoretic issue, which, by contrast, has largely been neglected. The basic difficulty with

classical formulations of the first problem is that they do not tell us anything of genuine

substance concerning the computational processes involved in actual human language

learning. Positive examples give us enough information to support learning, unless the

distribution of data samples is pathological. But, there is no reason to think that it is.

Moreover, information theoretic arguments for the poverty of the stimulus suffer from a

serious conceptual confusion. They systematically confound the hypothesis space with the

class of learnable languages. Consequently, they fail to provide insight into the properties

of the learner.

Results derived from complexity considerations offer a more promising source of

insight into the boundary conditions of learning. The positive results that we have sur-

veyed here indicate that we should be modeling the target of language acquisition as

an objective representation—a grammar whose primitive symbols can be directly identi-

fied from the measurably observable properties of the language itself. Such representa-

tions are efficiently learnable.15 Therefore, these results suggest that the types of

grammars that have been posited within different variants of the Principles and Parame-

ters program are not plausible candidates for learnable representations. This is because

the values of the proposed parameters are remote from the data of natural language,

and so they cannot be efficiently estimated or learned. In positive terms, although the

most elementary formalisms initially considered on the objective representation
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approach are too weak, more sophisticated grammars seem to achieve the right level of

expressive power for capturing the properties of natural language syntax, while remain-

ing efficiently learnable.
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Notes

1. On the relation between information theory and machine learning see (MacKay,

2003).

2. By finite language, we mean merely a language that consists of a finite number of

strings; we use the term regular language to refer to finite-state languages which

may be infinite

3. See Clark and Lappin (2011) for detailed discussion of this point, and suggestions

for alternative learning models.

4. IBE is sometimes claimed to be maximally powerful. In fact, there are classes that

are not learnable through IBE, but are learnable through other procedures. How-

ever, there are more elaborate learning models that are enumerative and can work

in more general settings (De Jongh & Kanazawa, 1996).

5. They have infinite VC dimension.

6. See for example Lemma 3.10 of (Haussler & Kearns, 1991).

7. Under certain conditions, it can be shown that every learnable class of languages

can be learned by a learner that is prudent in this sense (Fulk, 1990). These results

do not concern efficient learning. This does not, of course, mean that all learners

are prudent.

8. We can observe the properties of naturally occurring samples of the primary lin-

guistic data, and from these deduce properties of the distributions from which they

are drawn. For example, we can have good estimates of the distributions of lengths

of utterances, of lexical frequencies, and, from annotated corpora, of the relative

frequency of various construction types, morphosyntactic features and so on (Cohen

& Smith, 2012; MacWhinney, 1995; Sagae, Davis, Lavie, MacWhinney & Wintner,

2007).

9. We would like to thank Robert Matthews for helpful discussion of this point.

10. It coincides with the class of context-sensitive languages.
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11. In recent articles, proving the hardness of certain learning problems, the proof is

based on constructing a finite set of 2n grammars, parameterized by n binary

parameters, and showing that learning this class would involve solving some cryp-

tographic problem. Works using this technique include (Kearns et al., 1994).

Alternatively, we have some finite class of automata generating binary strings that

can be trivially encoded by a small set of binary parameters.

12. See (Clark & Lappin, 2011; Lappin & Shieber, 2007) for detailed discussion of

this point.

13. Although there has been a great deal of interesting work in the last decade on the

neural infrastructure for language processing, the results obtained so far are still

very far from shedding direct light on the cognitively real representations that

emerge in the brain (Gouvea, Phillips, Kazanina & Poeppel, 2010; Marantz,

2005).

14. Models where the learner receives access to the trees are widely used in computa-

tional linguistics, but they are irrelevant here.

15. There are a number of subtle details involved in precisely defining the notion of

efficient learnability. See (Case & K€otzing, 2009; Higuera, 1997; Pitt, 1989) for

discussion.
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