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This is a gentle introduction to Multiple Context Free Grammars
(mcfgs), intended for linguists who are familiar with context free
grammars and movement based analyses of displaced constituents, but
unfamiliar with Minimalist Grammars or other mildly context-sensitive
formalisms.1 1 I originally wrote this for LOT 2012.

This is a lightly edited version with a
few corrections.

Introduction

So to start, a very small bit of historical background – not by any
means a proper survey. We are all familiar with the Chomsky hier-
archy 2. This defined a collection of different formalisms that have 2 N. Chomsky. Three models for

the description of language. IEEE
Transactions on Information Theory, 2(3):
113–124, 1956

various types of power. This was an incredible intellectual accomp-
ishment, but Chomsky (unsurprisingly) didn’t get it absolutely right
first time. Before Chomsky’s pioneering work, there were three very
natural classes of languages – the class of finite languages, the class
of regular languages, and the class of computable languages. We blur here some technical distinc-

tions between recursive, primitive
recursive and recursively enumerable
languages that are not relevant to the
discussion.

Chomsky identified the class of context free grammars (CFGs), and
he recognised (correctly, but on the basis of incorrect arguments) that
this was insufficient for describing natural languages.

In the context of linguistics, it is clear that Chomsky’s initial at-
tempt to formalise a richer model than context free grammars ended
up with a class that is much too powerful to be useful: the context
sensitive grammars are equivalent just to Turing machines with a
certain bound and have a completely intractable parsing problem.
More formally, determining whether a string is generated by a con-
text sensitive grammar is decidable, in that it can be determined by
a computer in a well defined way, but it would require far too many
computational steps to do in general. If we are interested in cogni-
tively real representations, then given that the human brain has a
limited computational capacity, we can safely assume that the repre-
sentations that are used can be efficiently processed. When it finally
became clear that natural languages were not weakly context free 3 3 S. Shieber. Evidence against the

context-freeness of natural language.
Linguistics and Philosophy, 8:333–343,
1985

interest thus shifted to classes that are slightly more powerful than
context free grammars while still having a tractable parsing problem
– these are the mildly context-sensitive formalisms 4. There has been a 4 K. Vijay-Shanker and David J. Weir.

The equivalence of four extensions of
context-free grammars. Mathematical
Systems Theory, 27(6):511–546, 1994

great deal of work on this recently, which we won’t try to summarise
completely – here we describe what we think of as the simplest and
most natural extension of CFGs, the class of Multiple Context Free
Grammars introduced by Seki et al. 5. These turned out to be equiv- 5 H. Seki, T. Matsumura, M. Fujii, and

T. Kasami. On multiple context-free
grammars. Theoretical Computer Science,
88(2):229, 1991
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alent to Minimalist Grammars 6 under certain assumptions. In this 6 E. Stabler. Derivational minimalism.
In C. Retoré, editor, Logical aspects of
computational linguistics (LACL 1996),
pages 68–95. Springer, 1997

note we will try to give a non technical explanation of MCFGs in a
way that is accessible to linguists and in particular to explain how
these can give a natural treatment of the types of syntactic phenom-
ena that in mainstream generative grammar have been treated using
movement.

One important property of MCFGs that they share with CFGs, is
that they define a natural notion of hierarchical structure through
their derivation trees. Chomsky and many others often emphasize
the importance of considering structural descriptions rather than just
surface strings: of strong generative capacity rather than just the weak
generative capacity considered in formal language theory. MCFGs,
just as with CFGs, have derivational structures that naturally give
a hierarchical decomposition of the surface string into constituents
– in the case of MCFGs as we shall see, these constituents can be
discontinuous or contain displaced elements.

However MCFGs also inherit some of the weaknesses of CFGs
– in particular, they lack an appropriate notion of a feature. Just as
with CFGs, modeling something as simple as subject verb agree-
ment in English, requires an expansion of the nonterminal symbols:
replacing symbols like NP with sets of more refined symbols like
NP3pers−sing and NP1pers−plur that contain person and number fea-
tures. In MCFGs, the nonterminals are again atomic symbols, and
thus a linguistically adequate system must augment the symbols
using some appropriate feature calculus. We don’t consider this inter-
esting and important problem here, but focus on the more primitive
issue of the underlying derivation operations, rather than on how
these operations are controlled by sets of features.

Context free grammars

We will start by looking at context free grammars and reconceiv-
ing them as being a bottom up rather than a top down derivation,
and we will switch to a new notation. The switch from a top-down
derivation to a bottom-up is in line with current thinking in the Min-
imalist Program which hypothesizes a primitive operation called
merge which combines two objects to form another.

Consider a simple CFG that has one nonterminal S, and produc-
tions S → ab and S → aSb. This generates the language L which con-
sists of ab, aabb, aaabbb, . . . indeed all strings consisting of a nonzero
sequence of as followed by an equal number of bs. Here S is a non- In maths we would say L = {anbn|n >

0}.terminal and a and b are terminal symbols. If we consider the string
aaabbb, we would say there is a valid derivation which goes some-
thing like this:
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1. We start with the symbol S.

2. We rewrite this using the production S→ aSb to get aSb.

3. We rewrite the symbol S in the middle of aSb using the produc-
tion S→ aSb to get aaSbb.

4. We rewrite this using the production S → ab to get aaabbb. We
don’t have any nonterminal symbols left so we stop there.

It is much better to think of this as a tree.
S

bS

bS

ba

a

a

We can view the CF production S → aSb as an instruction to build
the tree starting from the top and going down: that is to say if we
have a partial tree like this:

S

bSa

We can view the productions as saying that we can replace the
boxed S node in the tree with a subtree either of the same type or of
the type:

S

ba
An alternative way is to view it as a bottom-up construction. We

can think of the production S → ab as saying, not that we can rewrite
S as ab but rather that we can take an a and a b and we can stick
them together to form an S. That is to say the production S → aSb The switch to bottom up derivations is

also a part of the Minimalist Program.says that we can take the three chunks:

a and

S

w and b

and combine them to form a new unit like this
S

bS

w

a
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This suggests a change in notation: from S → aSb to S ← aSb. Let
us do something a little less trivial.

We have the standard notation N ∗⇒ w which means that N can
be rewritten through zero or more derivation steps into the string w.
Informally this means that w is an N – S ∗⇒ aabb means that aabb is
an S. We can write this more directly just as a predicate:

S(aabb). (1)

This says directly that aabb satisfies the predicate S. In an English
example, we might say NP(the cat), or VP(died).

A production rule of the form N → PQ then means, viewed
bottom up, that if we have some string u which is a P and another
string v that is a Q we can concatenate them and the result will be an
N. The result of the concatenation is the string uv: so we can write
this rule as an implication:

If u is a P and v is a Q, then uv is an N.

Writing this using the predicate notation this just says: P(u) and
Q(v) imples N(uv) We will write this therefore as the following
production:

N(uv)← P(u)Q(v) (2)

Here N, P, Q are nonterminals and u and v are variables. We will use This notation is due to Makoto
Kanazawa and is based on a logic
programming notation. Originally in
Prolog this would be written with “:=”
instead of←. These are sometimes
called Horn clauses.

letters from the end of the alphabet for variables in what follows. We
don’t have any terminal symbols in this rule.

Productions like S → ab turn into rules like S(ab) ← where there
is nothing on the right hand side, because there are no nontermi-
nals on the righthand side of the rule. So we will just write these as
S(ab), and suppress the arrow. We can view this as a starightforward
asertion that a string ab is in the set of strings derived from S.

Let us go back to the trivial example before ( S → aSb). If w is an
S, then awb is also an S: we write this as

S(awb)← S(w) (3)

Note that the terminal symbols a and b end up here on the left hand
side of the rule. This is because we know that an a is an a!

We could define predicates like A which is true only of a, and then
have the rule S(uwv) ← A(u), S(w), B(v), together with the rules
with an empty righthand side A(a) and B(b).

Here A, and B would be like preterminals in a CFG, or lexical
categories in some sense:
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S

B

b

SA

a
Let us consider a point which is kind of trivial here but becomes

nontrivial later. Compare the two following rules:

N(uv)← P(u)Q(v) (4)

N(uv)← Q(v)P(u) (5)

If you think about this for a moment, they say exactly the same
thing. Two context free rules N → PQ and N → QP are different
because we express the two different concatenations uv versus vu by
the order of the nonterminals on the right hand side of the rule. In
the case of this new format, we express the concatenation explicitly
using variables. This means we have a little bit of spurious ambiguity
in the rules. We can stipulate that we only want the first one – for
example by requiring that the order of the variables on the left hand
side must match the order of the variables in the right hand side.

Think a little more here – if we have two string u and v there are
basically two ways to stick them together: uv and vu. We can express
this easily using the standard CFG rule, just by using the two orders
PQ and QP. But are there only two ways to stick them together?
What about uuv? Or uuuu? Or uvuvvuuu? Actually there are, once
we broaden our horizons, a whole load of different ways of combin-
ing u and v beyond the two trivial ones uv and vu. But somehow the
first two ways are more natural than the others because they satisfy
two conditions: first, we don’t copy any of them, and secondly we
don’t discard any of them. That is to say the total length of uv and vu
is going to be just the sum of the lengths of u and v no matter how
long u and v are. Each variable on the right hand side of the rule oc-
curs exactly once on the left handside of the rule – and there aren’t
any other variables. uuuv is bad because we copy u several times,
and uu is bad because we discard v (and copy u). We will say that
concatenation rules that satisfy these two conditions are linear.

So the rule N(uv) ← P(u)Q(v) is linear, but N(uvu) ← P(u)Q(v)
is not.

Summarising, the grammar for anbn above just has two produc-
tions that we write as S(ab) and S(awb)← S(w).

When we have a derivation tree for a string like aabb we can write
this with each label of the tree being a nonterminal as we did earlier
— this is the standard way — or we can write it where each node is
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labeled with the string that that subtree derives, or we can label them
with both.

S

bS

ba

a

aabb

bab

ba

a

S(aabb)

bS(ab)

ba

a

The last of these three trees has the most information, but if we
have long strings, then the last two types of tree will get long and
unwieldy.

Finally, when we look at the last two trees, we can see that we
have a string attached to each node of the tree. At the leaves of the
tree we just have individual letters, but at the nonleaf nodes we have
sequences that may be longer. Each of these sequences corresponds
to an identifiable subsequence of the surface string. That is to say,
when we consider the node labeled S(ab) in the final tree, the ab is
exactly the ab in the middle of the string.

S(aabb)

bS(ab)

ba

a

a a b b

This diagram illustrates this obvious point: we have drawn the
surface string aabb below the tree. Each leaf node in the tree is linked
by a dotted line to the corresponding symbol in the surface string.
We have boxed in red the nonleaf node labeled S(ab)) and boxed
in blue the corresponding subsequence of the surface string ab. In
a CFG we can always do it, and the subsequence will always be a
contiguous subsequence – i.e. one without gaps. This is very easy
to understand if you are familiar with CFGs: the point here is to
introduce the diagram/notation in a familiar context so that when
we reuse it for MCFGs it is easy to understand there too. Thus the
derivation tree of the CFG defines a hierarchical decomposition of
the surface string into contiguous subsequences that do not overlap,
but may include one another. The root of the tree will always corre-
spond to the whole string, and the leaves will always correspond to
individual symbols in the string.
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Multiple Context Free Grammars

There are many linguistic phenomena where it is impossible or diffi-
cult to find an adequate analysis using just the machinery of context
free grammars, and simple trees of this type, and as a result, almost
immediately after CFGs were invented by Chomsky, he augmented
them with some additional machinery to handle it. The particular
augmentations he considered – transformations – have gone through
various iterations over the years. Here we will take a different di-
rection that is more computationally tractable and discuss the re-
lationship to the movement based approach. We will discuss some
examples, like Swiss German cross serial dependencies in a bit of
detail below, but even a very simple example like a relative clause in
English causes some problems.

(6) This is the book that I read.

(7) This is the book that I told you to read.

The problem is that it is difficult to find a construction that sup-
ports a compositional semantics for this sentence – “book” must be
simultaneously a head of the NP (or something similar in a DP analy-
sis), and the object in some underlying sense of the verb “read”. So in
a sense it needs to be in two places at once.

Traditionally we have some idea of movement where the noun
“book” starts off in some underlying position as an object of “read”
and then moves to its final position as shown in this figure.

Computationally it turned out that this movement operation, in
its unconstrained form, violated some fundamental properties of
efficient computation 7. There is an alternative way of modeling this 7 P .S. Peters and R. W. Ritchie. On the

generative power of transformational
grammars. Information Sciences, 6:49–83,
1973

data that turns out to be exactly equivalent to a restricted form of the
movement analysis, which also is computationally efficient and thus
cognitively plausible in the way that the unconstrained movement
approaches are not.

We will now define the extension from CFGs to MCFGs, and then
we will discuss the linguistic motivation in some depth. The key el-
ement is to extend the predicates that we have in our CFG, so that
instead of applying merely to strings, they apply to pairs of strings. In full generality, MCFGs form a

hierarchy where nonterminals can
derive not just single strings or pairs
of strings, but tuples of arbitrary arity.
Here for presentational purposes we
will restrict ourselves to the simpler
case of pairs of strings, which may
in any event be sufficient for natural
language description.

These pairs of strings have a number of different linguistic interpre-
tations. In a CFG which generates individual strings, we take these
strings to be constituents. In an MCFG, one interpretation of the pair
is as a discontinuous constituent — that is to say, we have something
that we want to be a constituent, but which has some material in-
serted in the middle that we want not to be part of that constituent.
We can consider this as a constituent with a gap in it, and the pair
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NP

N

RP

S

VP

t

ε

V

read

NP

I

R

that

N

book

D

the

Figure 1: Tree diagram with movement
– the labels on the nodes and the spe-
cific analysis are not meant to be taken
seriously. There are a number of com-
peting analyses for this construction.

of strings will correspond to the two parts of this: the first element
of the pair will correspond to the segment of the constituent to the
left of the gap (before the gap) and the second element of the pair
will correspond to the segment after the gap. This is not the only
interpretation: we might also have some construction that would be
modeled as movement – in that case we might have one part of the
pair representing the moving constituent, and the other part repre-
senting the constituent that it is moving out of.

So in our toy examples above we had a nonterminal N and we
would write N(w) to mean that w is an N. We will now consider a
two-place predicate on strings, that applies not just to one string, but
to two strings. So we will have some predicates, say M which are two
place predicates and we will write M(u, v) to mean that the ordered
pair of strings u, v satisfies the predicate M. Rather than having a
nonterminal generating a single string S ∗⇒ aabb, we will have a non-
terminal that might rewrite a pair of strings M ∗⇒ (aa, bb). Since we
want to define a formal language, which is a set of strings, we will
always want to have some “normal” predicates which just generate
strings which will include S. Terminologically, we will say that all
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of these nonterminals have a dimension which is one if it generates a
single string and two if it generates a pair of strings. Unsurprisingly we can also define

MCFGs which have symbols of dimen-
sion greater than 2.

To avoid confusion in this early stage, we will nonstandardly put
a subscript on all of our nonterminal symbols/predicates to mark
which ones generate strings and which ones generate pairs of strings:
that is to say we will subscript each symbol with the dimension of
that symbol. Thus S, the start symbol, will always have dimension
1, and thus will be written as S1. If we have a symbol N that derives
pairs of strings, we will write it as N2. So we might write S1

∗⇒ u and
N2

∗⇒ (u, v). In a CFG of course, all of the symbols have dimension 1. A CFG indeed is just the special case of
an MCFG of dimension 1.Let us consider a grammar that has a nonterminal symbol of di-

mension two, say N2, in addition to a nonterminal S1 of dimension 1,
and let’s consider what the rules that use this symbol might look like.
Here are some examples:

S1(uv)← N2(u, v) (8)

This rule simply says that if N derives the pair of strings u, v then
S derives the string uv. Note the difference – u, v is an ordered pair of
two strings, whereas uv is the single string formed by concatenating
them. Thus N has a bit more structure – it knows not just the total
string uv, but also it knows where the gap is in the middle.

N2(au, bv)← N2(u, v) (9)

This one is more interesting. Informally this says that if N derives
(u, v) then it also derives the pair (au, bv). This rule is clearly doing
something more powerful than a CFG – it is working on two different
chunks of the string at the same time. At the same time, in the same
derivational step, we are adding an a in one place and a b in another
place.

N2(a, b). (10)

Finally we have a trivial rule – this just asserts that (a, b) is gener-
ated by N2. This is just an analog of the way that S → ab becomes
S(ab), but in this case we have an ordered pair of strings rather than
a single string.

An MCFG grammar consists, just like a CFG grammar, of a collec-
tion of nonterminals and some productions. Let’s look at the gram-
mar that has just these three rules. What language does it define?
Just as with a CFG, we consider the language defined by an MCFG
to be the set of strings generated by the symbol S1: since this has
dimension 1 by definition, we know that it generates a set of strings
and not a set of pairs of strings. N2 on the other hand generates a
set of pairs of strings. Let us think what this set is. To start off with
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we know that it contains a, b, by the third production. If it contains
a, b then it also contains aa, bb by the second rule. More slowly: the
second rule says that if N2 derives u, v then it derives au, bv. Since N2

derives a, b, setting u = a and v = b, this means that au = aa and
bv = bb so N2 derives aa, bb. Repeating this process, we can see that
N2 derives aaa, bbb and aaaa, bbbb and indeed all pairs of the form
an, bn where n is a finite positive number. So what does S1 derive?
Well, it just concatenates the two elements generated by N so this
means it generates the language ab, aabb, aaabbb, . . . which is just the
same as the CFG we defined before.

This might seem a letdown, but let’s look a little more closely at
the trees that are generated by this grammar. In particular let’s look
at the derivation tree for aaabbb.

When we try to write down a tree we immediately have a prob-
lem: what do the local trees look like? In a CFG it is easy because the
order of the symbols on the right hand side of the productions tell
you what order to write the symbols in. For example we have a rule
S → aSb, and so we write a tree like: S

bSa

where the children of

the tree occur in exactly the order of the symbols on the right hand
side – aSb. But as we saw earlier, we don’t have such a rigid notion
of order, as the order is moved onto the specific function that we put
on the left hand side of the rule. So we could write it in a number of
ways:

S1

N2

N2

N2

ba

ba

ba

S1

N2

bN2

bN2

ba

a

a

S1

N2

baN2

baN2

ba
This difference doesn’t matter. What matters crucially is this:

while we have defined exactly the same language as the CFG ear-
lier, the structures we have defined are completely different – in each
local tree we have an a and a b just as with the CFG, but think about
which pairs of as and bs are derived simultaneously. To see this easily
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let’s just label the tokens as follows: S1

N2

N2

N2

b3a3

b2a2

b1a1

Working bottom up in this tree we see that the bottommost N2

derives the pair a3, b3, the next one up derives a2a3, b2, b3 and the
top one derives a1a2a3, b1, b2, b3, and thus S derives a1a2a3b1, b2, b3.
Thus we have cross serial dependencies in this case as opposed to the
hierarchical dependencies.

We can write this into the tree like this as what is sometimes called
a value tree.

S(aaabbb)

N2(aaa, bbb)

N2(aa, bb)

N2(a, b)

ba

ba

ba

a1a2a3b1b2, b3

a1a2a3, b1b2b3

a2a3, b2b3

a3, b3

b3a3

b2a2

b1a1

Let us now draw the links from the nodes in the derivation trees to
the symbols in the surface string as before.

S(aaabbb)

N2(aaa, bbb)

N2(aa, bb)

N2(a, b)

ba

ba

ba

a a a b b b

Note that the red boxed symbol derives a discontinuous con-
stituent, which we have boxed in blue. As before, since we have
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restricted the rules in some way, we can identify for each node in
the derivation tree a subsequence (which might be discontinuous) of
symbols in the surface string.

Clearly, this gives us some additional descriptive power. Let’s look
at a larger class of productions now. Suppose we have three nonter-
minals of dimension 2: N2, P2 and Q2, and consider productions that
from N from P and Q.

A simple example looks like this:

N2(ux, vy)← P2(u, v), Q2(x, y) (11)

Here we have four variables: u, v, x, y. u and v correspond to the
the two parts of the pair of strings derived from the nonterminal
symbol of arity 2, P2. x and y correspond to the two parts derived by
the symbol Q2. We can see now why we need this switch in notation:
if we have two single strings, then there are two ways of concatenat-
ing them, and so we can comfortably represent this with the order of
the symbols on the right hand side of the production. If we have two
pairs of strings, say u, v and p, q there are many more ways of con-
catenating them together to form a single pair: up, vq, vq, up uq, vp,
upq, v and so on. We also have a load of other ways like uuuu, pvqu
and uuuu, vvv that we might want to rule out for the same reasons
that we ruled out the rules in CFGs above. So we will just consider
rules which are linear in the sense we defined above – namely that
each variable on the right hand side occurs exactly once on the left
hand side. We also want to consider another condition which rules
out productions like:

N2(vu, xy)← P2(u, v), Q2(x, y) (12)

Here we have vu on the left hand side, and P2(u, v) on the right
hand side. This has the property that the order of the variables u, v
in the term vu is different from the order in P2(u, v). This is called a
permuting rule and some of the time we want to rule it out. If a rule is
not permuting we say it is non-permuting. So for example:

N2(xuv, y)← P2(u, v), Q2(x, y) (13)

This rule is non-permuting – u, v occur in the right order and so too
do x, y. We do have x occurring before u, but that is ok – the per-
muting condition only holds for variables that are introduced by the
same nonterminal – so u has to occur before v and x has to occur
bfore y. The effect of this constraint on the rules, and the linearity
constraint is that it means that in a derivation, if we have a nontermi-
nal deriving a pair of strings u, v we can work out exactly which bit
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of the final string corresponds to the u and the v, and moreover we
will know that the string u occurs before the string v.

That is to say if we have an MCFG derivation tree that looks like
this.

S

YN

u,v

X

We know that the final string will look like lumvr – that is to say
we know that there will be a substring u and a substring v occuring
in that order, together with some other material before and after it.
This is the crucial point from a linguistic point of view – u, v forms
a discontinuous constituent. We can simultaneously construct the u
and the v even if they are far apart from each other. From a semantic
viewpoint this gives us a domain of locality which is not local with
respect to the surface order of the string – this means that for seman-
tic intepretation, a word can be “local” at two different points in the
string at the same time.

Crucially for the computational complexity of this, the formalism
maintains the context free property in a more abstract level. That is
to say, the validity of a step in the derivation does not depend on the
context that the symbol occurs in, only on the symbol that is being
processed. Thinking of it in terms of trees, this means that if we have
a valid derivation with a subtree headed with some symbol, whether
it is of dimension one or two, we can freely swap that subtree for any
other subtree that has the same symbol as its root, and the result will
be also be a valid derivation.

Noncontext-free languages

The language we defined before was a context-free language and
could be defined by a context free grammar, so in spite of the fact
that the structures we got were not those that could be defined by a
context free grammar, it wasn’t really exploiting the power of the for-
malism. Let’s look at a classic example, indeed the classic example, of
a linguistic construction that requires more than context free power:
the famous case of cross-serial dependencies in Swiss German 8.

8 S. Shieber. Evidence against the
context-freeness of natural language.
Linguistics and Philosophy, 8:333–343,
1985

The figure above shows the dependencies in the standard exam-
ple. The crucial point is that we have a sequence of noun phrases
that are marked for either accusative or dative case, and a sequence
of verb phrases that require arguments that are marked for either
accusative or dative case, and, finally, the dependencies overlap in
the way shown in the diagram. To get this right requires the sort of
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In principle an unbounded number of crossed dependencies is possible. However, except for the first
and last verb any permutation of the NPs and the verbs is grammatical as well (even though with a
completely different dependency structure since the dependencies are always cross-serial). Therefore,
the string language of Dutch cross-serial dependencies amounts roughly to {nkvk | k > 0} which is a
context-free language.

Bresnan et al. (1982) argue that the SGC of CFGs is too limited for the Dutch examples. Weakness
of the argument: an argument about syntactic structure makes always certain theoretical stipulations.
Although it is very probable, it does not absolutely prove that, even using different syntactic theories,
there is no context-free analysis for the Dutch examples. It only shows that the syntactic structures
Bresnan et al. think the appropriate ones cannot be obtained with a CFG.

Shieber’s argument about Swiss German cross-serial dependencies is more convincing since it relies only
on the string language, i.e., it concerns the WGC of CFGs. The Swiss German data:

(6) ... das mer em Hans es huus hälfed aastriiche
... that we Hans-DAT house-ACC helped paint

‘... that we helped Hans paint the house’

(7) ... das mer d’chind em Hans es huus lönd hälfe aastriiche
... that we the children-ACC Hans-DAT house-ACC let help paint

‘... that we let the children help Hans paint the house’

Swiss German uses case marking and displays cross-serial dependencies.

Proposition 5 The language L of Swiss German is not context-free (Shieber 1985).

Argumentation goes as follows: Assume that L is context-free. Then the intersection of a regular language
with the image of L under a homomorphism must be context-free as well. Find a homomorphism and a
regular language such that the result is a non context-free language. Contradiction.

Further possible sentence:

(8) ... das mer d’chind em Hans es huus haend wele laa hälfe aastriiche
... that we the children-ACC Hans-DAT house-ACC have wanted let help paint
‘... that we have wanted to let the children help Hans paint the house’

Swiss German allows constructions of the form (Jan säit) (‘Jan says’)das mer (d’chind)i (em Hans)j es
huus haend wele (laa)i (hälfe)j aastriiche. In these constructions the number of accusative NPs d’chind
must equal the number of verbs (here laa) selecting for an accusative and the number of dative NPs em
Hans must equal the number of verbs (here hälfe) selecting for a dative object. Furthermore, the order
must be the same in the sense that if all accusative NPs precede all dative NPs, then all verbs selecting
an accusative must precede all verbs selecting a dative.

Homomorphism f :

f(“d’chind”) = a f(“Jan säit das mer”) = w
f(“em Hans”) = b f(“es huus haend wele”) = x

f(“laa”) = c f(“aastriiche”) = y
f(“hälfe”) = d f(s) = z otherwise

6

Figure 2: Swiss German cross serial
dependencies, taken from Shieber
(1985). This would be preceded by
something like “Jan säit” (Jan says).

MCFG apparatus that we have developed.
Let’s abstract this a little bit and consider a formal language for

this non context free fragment of Swiss German. We consider that
we have the following words or word types: Na, Nd which are re-
spectively accusative and dative noun phrases, Va, Vd which are verb
phrases that require accusative and dative noun phrases respectively,
and finally C which is a complementizer which appears at the begin-
ning of the clause. Thus the “language” we are looking at consists of
sequences like

(14) CNaVa

(15) CNdVd

(16) CNaNaNdVaVaVd

but crucially does not contain examples where the sequence of ac-
cusative/dative markings on the noun sequence is different from the
sequence of requirements on the verbs. So it does not contain CNdVa,
because the verb requires an accusative and it only has a dative, nor
does it include CNaNdVdVa, because though there are the right num-
ber of accusative and dative arguments (one each) they are in the
wrong order – the reverse order. Actually this is incorrect: according to

Shieber the nested orders are acceptable
as well. We neglect this for ease of
exposition.

We can write down a simple grammar with just two nonterminals:
we will have one nonterminal which corresponds to the whole clause
S1, amd one nonterminal that sticks together the nouns and the verbs
which we will call T2. No linguistic interpretation is intended for
these two labels — they are just arbitrary symbols. As the subscripts
indicate, the S1 is of dimension 1 and just derives whole strings, and
the T2 has dimension 2, and derives pairs of strings. The first of the
pair will be a sequence of Ns and the second of the pair will be a
matching sequence of Vs.
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We will have the following rules:

S1(Cuv)← T2(u, v) (17)

T2(Na, Va) (18)

T2(Nd, Vd) (19)

T2(Nau, Vav)← T2(u, v) (20)

T2(Ndu, Vdv)← T2(u, v) (21)

The first rule has a right hand side which directly introduces the
terminal symbol C and concatenates the two separate parts of the T2.
The next two rules just introduce the simplest matching of noun and
verb, and the final two give the recursive rules that allow a poten-
tially unbounded sequence of nouns and verbs to occur. Note that
in the final two rules we add the nouns and verbs to the left of the
strings u and v. This is important because, as you can see by looking
at the original Swiss german example, the topmost nound and verb
occur on the left of the string.

Let us look at how this grammar will generate the right strings
and structures for these examples. We will put some derivation trees
for the examples above, together with the matching value trees on
the right. We will start with the two trivial ones which aren’t very

revealing. First we have the example CNaVa:

S1

T2

VaNa

C

CNaVa

Na, Va

VaNa

C

S1(CNaVa)

T2(Na, Va)

VaNa

C

Now we have the example CNdVd

S1

T2

VdNd

C

CNdVd

Nd, Vd

VdNd

C

S1(CNdVd)

T2(Nd, Vd)

VdNd

C
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Now lets consider the longer example with three pairs: CNaNaNdVaVaVd.
We have a derivation tree that looks like the following diagram.

S1(CNaNaNdVaVaVd)

T2(NaNaNd, VaVaVd)

T2(NaNd, VaVd)

T2(Nd, Vd)

VdNd

VaNa

VaNa

C

This is a bit cluttered so in the next diagram of the same sentence
we have drawn dotted lines from the terminal symbols in the deriva-
tion tree to the symbols in their positions in the original string so that
the structure of the derivation can be seen more easily.

S1

T2

T2

T2

VdNd

VaNa

VaNa

C

C Na Na Nd Va Va Vd

We also do the same thing but where we mark one of the nonter-
minals, here boxed in red, and also mark boxed in blue the discontin-
uous constituent that is derived from that nonterminal.
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S1

T2

T2

T2

VdNd

VaNa

VaNa

C

C Na Na Nd Va Va Vd

Finally, by looking at the diagram we can see that we have the
right dependencies between the Ns and the Vs: if we look at which
ones are derived in the same step, or directly from the same nonter-
minal, we can see that these correspond to the cross serial dependen-
cies. Reusing the same diagram and adding lines between Ns and Vs
that are derived in the same step we get the following situation.

S1

T2

T2

T2

VdNd

VaNa

VaNa

C

C Na Na Nd Va Va Vd
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Relative clauses

Let us now try to use MCFGs to do a direct analysis of the relative
clause example we looked at before. We repeat the figure here.

NP

N

RP

S

VP

t

ε

V

read

NP

I

R

that

N

book

D

the

Figure 3: Movement analysis

The point of the movement analysis is that the word “book” occurs
both in the gap, and then in the position as head of the NP, where it
is pronounced. We need it to be in both places so it can be analysed
in its two semantic roles – a fact that is captured even more directly
by the copy theory of movement.

The key insight, which is captured by the Minimalist grammar
analysis, is that we don’t need to move anything, as long as we derive
the word in two places. So this analysis has two parts. The first is
that in the position of the gap, we derive the word or phrase that is
going to move, but instead of actually concatenating it together, it is
held in a waiting position where it is kept until the derivation arrives
at the particular point where it is actually pronounced. The second
part is where the moving component actually lands, and then it is
integrated into the final structure. So in a MG analysis the nodes
of the derivation tree have two parts, the part that is actually being
built, and a list of zero or more constituents that are in the process of
moving.

NP

N

RP,N

S,N

VP,N

N

book

V

read

NP

I

R

that

D

the

In the diagram here, we have marked the first part in a blue box,
and the second part in a red box. In the blue box in the tree, we see
that a transitive verb is combined with the noun “book”, however
instead of being directly combined into a symbol of dimension 1, we
keep it to one side, as it is going to move to another location where
it will be pronounced. Higher up in the tree, in the local tree in the
red box, we see where the moving constituent lands. Here we have a
rule that takes the moving constituent, the N and combines it into the
structure. Thus the unary tree in the red box, has a dimension one
symbol at the parent, and a dimension 2 symbol as the single child.
In between the two boxes we have a succession of rules that resemble
context free rules.

We can put this as a value tree in the following example:
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the book that I read

book that I read

that I read,book

I read,book

read,book

book

book

read

read

I

I

that

that

the

the

In fact we will make a minor notational difference and switch the
orders of the moving and head labels, so that they reflect the final
order in the surface string.

This is because we want to use only
non-permuting rules. This means
that when we look at Figure4 the
diagram on the right hand side has
concatenations that do not permute.

NP

N

N,RP

N,S

N,VP

V

read

N

book

NP

I

R

that

D

the

the book that I read

book that I read

book,that I read

book,I read

book,read

read

read

book

book

I

I

that

that

the

the

Figure 4: Figure showing the swapped
order, with the derivation tree on the
left and the value tree on the right.

We can now write down the sorts of rules we need here: for each
local tree, assuming that the not very plausible labels on the trees
are ok, we write down a rule. The nonterminal symbols here in the
MCFG will just be one for each label that we get in the tree. Note
that these correspond in some sense to tuples of more primitive la-
bels. Thus the node in the tree labeled N, S will turn into an atomic
symbol, NS, in the MCFG we are writing, but has some internal
structure that we flatten out – it is an S with an N that is moving out
of it.
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NP1(uv)← D1(u), N1(v) (22)

N1(uv)← NRP2(u, v) (23)

NRP2(u, wv)← R1(w), NS2(u, v) (24)

NS2(u, wv)← NP1(w), NVP2(u, v) (25)

NVP2(u, v)← N1(u), V1(v) (26)

Let’s look at these rules in a little more detail. The first rule is kind
of trivial – this is just a regular CFG rule – all three of the symbols
have dimension 1. The second one is more interesting: here we have
a symbol with dimension 2 – NRP2. This keeps track of two chunks
– the first is the moving chunk which is the N, and the second is the
chunk that it is moving out of, which is the relative clause. The rule
just says – this is the point at which the piece can stop moving, so
the concatenation looks trivial. The third (lhs NRP2) is also interest-
ing: this is an example of a much larger class of rules. This rule just
transfers the moving constituent up the tree. In a longer example like

(27) This is the book that I told you Bob said I should read.

we will have a long sequence of rules of this type, that pass the
moving constituent up. Generally we will have lots of rules like
MX2(u, wv) ← Y1(w), MZ2(u, v). These rules mean that we have
a constituent with something moving out of it – this is the MZ2 non-
terminal, where the first component u is moving and the second
component v means the bit that it is moving out of. We also have a
normal constituent without any movement – Y1. The result is a con-
stituent MX2 where the u is still moving. So the w is concatenated
onto the v and the u remains as a separate piece. These correspond to
rules without a moving constituent like X1(wv)← Y1(w), Z1(v). The symbols MX2, X1 etc are unrelated

in the MCFG formalism but are related
at a linguistic level.

Finally we have the rule labeled 26. This rule has a symbol of di-
mension 2 on the left hand side, and two symbols of dimension 1

on the right hand side. This rule is called when the consituent starts
to move. We introduce the noun that is the object of the verb and
the verb at the same time, but instead of concatenating them as one
might normally, we displace the noun and keep it as a separate com-
ponent. Crucially the semantic relation between the noun and the
verb if local – they are introduced at the same step in the derivation
tree, so that when we want to do semantic interpretation they will
be close to each other so that the appropriate meaning can be con-
structed compositionally. In many languages there might also be
an agreement relation between the verb and the object, which again
could be enforced through purely local rules.

You could also spit this rule into two separate rules using some-
thing like a trace or phonetically null element. If we define a null
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element using the symbol T1 for trace, we can define a rule T1(λ) that
introduces the empty string λ. We then define a nonterminal of di-
mension 2, NT2 which generates the moving word and trace. We can
then rewrite the rule using the two rules.

NVP2(u1, vu2)← NT2(u1, u2), V1(v)

NT2(u, v)← N1(u), T1(v)

Such an approach would also be appropriate for languages which
have resumptive pronouns which are not phonetically null. In that
case we would have a pronounced element instead of T(λ).

Now when we consider the MCFG that this is a fragment of, it is
clear that it is inadequate in quite a fundamental respect – it fails to
capture generalisations between the nonterminal symbols. This is the
same limitation that plain CFGs have but it is even more acute now.
One of the problems with CFGs that was fixed by GPSG 9 is the fact 9 G. Gazdar, E. Klein, G. Pullum, and

I. Sag. Generalised Phrase Structure
Grammar. Basil Blackwell, 1985

that there is no relationship between different symbols – either they
are identical or they are completely unrelated. In real languages we
have, for example, singular NPs and plural NPs. These need to be
represented by different nonterminals in a CFG, but there is no way
in a plain CFG to represent their relationship. The grammar must
tediously spellout every rule twice. Similarly with an MCFG, we have
to spell out every combination of rules with moving and nonmoving
constituents. The end result will be enormous – finite, of course, but
too large to be plausibly learned. Indeed the results that show the
equivalence of MCFGs and MGs 10 tend to reveal an exponential 10 J. Michaelis. Transforming linear

context-free rewriting systems into
minimalist grammars. In P. de Groote,
G. Morrill, and C. Retoré, editors, Log-
ical Aspects of Computational Linguistics,
pages 228–244. Springer, 2001

blowup in the size of the MCFG that results from the conversion
from a Minimalist Grammar. Thus it is important to augment MCFGs
with an appropriate feature calculus that can compactly represent the
overly large MCFGs, and reduce the redundancies to an acceptable
level.

Discussion

The relation to tree adjoining grammars (TAG) and other similar
formalisms, such as Linear Context Free Rewriting Systems (LCFRS),
is very close. LCFRSs are really just another name for MCFGs, and as
Joshi et al. 11 showed, the derivation trees of a wide range of mildly 11 A.K. Joshi, K. Vijay-Shanker, and

D.J. Weir. The convergence of mildly
context-sensitive grammar formalisms.
In Peter Sells et al., editor, Foundational
Issues in Natural Language Processing,
pages 31–81. MIT Press, Cambridge,
MA, 1991

context sensitive formalisms can be modeled by LCFRSs. In a TAG
we have an adjunction operation that corresponds to a restricted
subset of rules: the derivation trees will use only use well-nested
rules. Thus in a TAG we cannot have a rule that looks like this:

N2(ux, vy)← P2(u, v), Q2(x, y) (28)
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This rule violates the well-nested condition because the u, v pair
and the x, y pair will overlap rather than be nested one within the
other. Look at the left hand side of this rule and see how the vari-
ables from P2 and from Q2 overlap each other. These two rules on the
other hand are well nested:

N2(ux, yv)← P2(u, v), Q2(x, y) (29)

N2(xu, vy)← P2(u, v), Q2(x, y) (30)

It is an open question whether non-well-nested rules are necessary
for natural language description.

MCFGs in their full generality allow symbols of more than dimen-
sion 2. This gives rise to a complicated hierarchy of languages that
we will just sketch here. There are two factors that affect this hierar-
chy – one is the maximum dimension of the symbols in the grammar,
and the other is the maximum number of symbols that we have on
the right hand side of the rules. In a CFG, we know, since all CFGs
can be converted into Chomsky Normal Form, that as long as we are
allowed to have at least 2 symbols on the right hand sides of rules,
we do not have a restriction. This is not the case for MCFGs. We will
call the rank of a grammar the maximum number of nonterminals
that we have on the right hand side of a rule. There is a complicated
2-dimensional hierarchy of MCFGs based on their rank and dimen-
sion. It seems that for natural languages we only need some simple
ones at the bottom of the hierarchy, with perhaps dimension and
rank only of 2. If we write r for the rank and d for the dimension,
then MCFGs can be parsed in time n(r+1)d. Note that if we consider
CFGs in Chomsky normal form, we have d = 1 and r = 2, so this
gives us a parsing algorithm that is n3 as we would expect. For the
case of r = 2 and d = 2 which may be adequate for natural lan-
guages, we need n6.

MCFGs also have a lot of the nice properties that CFGs have —
they form what is called an abstract family of languages. This means
for example that if we have two languages generated by a MCFG
then their union can also be defined by an MCFG — they are closed
under the union operation. They are also closed under many other
operations – intersection with regular sets, Kleene star and so on.
This means they are a natural computational class in a certain sense.

They are also not very linguistic: you can equally well use these
for modelling DNA sequences or anything else. Some of the other
formalisms equivalent to MCFGs or subclasses, have quite a lot of
interesting linguistic detail baked into the formalism in some way.
MCFGs are quite neutral in this respect, just like CFGs. This may or
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may not be a good thing, depending on your point of view.
A brief comment about the notation: the form we have for the

rules here was introduced by Kanazawa 12 and is in our opinion 12 Makoto Kanazawa. The pump-
ing lemma for well-nested multiple
context-free languages. In Developments
in Language Theory, pages 312–325.
Springer, 2009

a great improvement on the original notation of Seki et al.13. The

13 H. Seki, T. Matsumura, M. Fujii, and
T. Kasami. On multiple context-free
grammars. Theoretical Computer Science,
88(2):229, 1991

notation is perhaps closest to the notation for some other closely re-
lated formalisms, such as Range Concatenation Grammars14 and

14 P. Boullier. Chinese Numbers, MIX,
Scrambling, and Range Concatenation
Grammars. Proceedings of the 9th
Conference of the European Chapter of the
Association for Computational Linguistics
(EACL 99), pages 8–12, 1999

Literal Movement Grammars 15: these notations are based on what

15 A.V. Groenink. Mild context-
sensitivity and tuple-based general-
izations of context-grammar. Linguistics
and Philosophy, 20(6):607–636, 1997

are called Horn clauses, which are often used in logic programming.
We have used← instead of the traditional connective := to empha-
size the relation with the derivation operation denoted by→. The
technical literature tends to use the original notation.

If we are interested in cognitive modeling, we are always working
at a significant level of abstraction – as Stabler argues 16 we should

16 E.P. Stabler. Computational perspec-
tives on minimalism. In Cedric Boeckx,
editor, Oxford Handbook of Linguistic
Minimalism, pages 617–641. 2011

focus on the abstract thing that is being computed. The equiva-
lence of MCFGs and MGs, as well as the equivalence of subclasses
of MCFGs to TAGs and the other well-known equivalences, when
taken together, suggest that MCFGs define the right combinatorial
operations to model natural language syntax. From a linguistic mod-
eling point of view, MCFGs have two compelling advantages – first
they can be efficiently parsed, and secondly various subclasses can be
efficiently learned 17. 17 Ryo Yoshinaka. Polynomial-time

identification of multiple context-free
languages from positive data and mem-
bership queries. In Proceedings of the
International Colloquium on Grammati-
cal Inference, pages 230–244, 2010; and
Ryo Yoshinaka. Efficient learning of
multiple context-free languages with
multidimensional substitutability from
positive data. Theoretical Computer
Science, 412(19):1821 – 1831, 2011

One of the deep sociological divides in formal/theoretical syn-
tax is between formalisms that use movement and formalisms that
don’t. One fascinating implication of the research into MCFGs is that
it indicates that this divide does not depend on any technical differ-
ence. In a certain sense, there is a precise formal equivalence between
movement based models and monostratal ones.

Acknowledgments

Nothing in this note is original; I am merely re-explaining and re-
packaging the ideas of Makoto Kanazawa, Ed Stabler and many oth-
ers. My thanks to Ryo Yoshinaka for checking an earlier draft of this
note. Thanks also to Chris Brew, Misha Becker for suggesting correc-
tions. There is only a very partial list of citations here: apologies to
anyone who feels slighted.

Comments and corrections are very welcome (genuinely — I am
not just being polite) and should be sent to alexsclark@gmail.com.

References

P. Boullier. Chinese Numbers, MIX, Scrambling, and Range Con-
catenation Grammars. Proceedings of the 9th Conference of the European



an introduction to multiple context free grammars for linguists 24

Chapter of the Association for Computational Linguistics (EACL 99),
pages 8–12, 1999.

N. Chomsky. Three models for the description of language. IEEE
Transactions on Information Theory, 2(3):113–124, 1956.

G. Gazdar, E. Klein, G. Pullum, and I. Sag. Generalised Phrase Struc-
ture Grammar. Basil Blackwell, 1985.

A.V. Groenink. Mild context-sensitivity and tuple-based generaliza-
tions of context-grammar. Linguistics and Philosophy, 20(6):607–636,
1997.

A.K. Joshi, K. Vijay-Shanker, and D.J. Weir. The convergence of
mildly context-sensitive grammar formalisms. In Peter Sells et al.,
editor, Foundational Issues in Natural Language Processing, pages 31–
81. MIT Press, Cambridge, MA, 1991.

L. Kallmeyer. Parsing beyond context-free grammars. Springer Verlag,
2010.

Makoto Kanazawa. The pumping lemma for well-nested multiple
context-free languages. In Developments in Language Theory, pages
312–325. Springer, 2009.

J. Michaelis. Transforming linear context-free rewriting systems into
minimalist grammars. In P. de Groote, G. Morrill, and C. Retoré,
editors, Logical Aspects of Computational Linguistics, pages 228–244.
Springer, 2001.

P .S. Peters and R. W. Ritchie. On the generative power of transfor-
mational grammars. Information Sciences, 6:49–83, 1973.

H. Seki, T. Matsumura, M. Fujii, and T. Kasami. On multiple
context-free grammars. Theoretical Computer Science, 88(2):229, 1991.

S. Shieber. Evidence against the context-freeness of natural lan-
guage. Linguistics and Philosophy, 8:333–343, 1985.

E. Stabler. Derivational minimalism. In C. Retoré, editor, Logical
aspects of computational linguistics (LACL 1996), pages 68–95. Springer,
1997.

E.P. Stabler. Computational perspectives on minimalism. In Cedric
Boeckx, editor, Oxford Handbook of Linguistic Minimalism, pages 617–
641. 2011.

K. Vijay-Shanker and David J. Weir. The equivalence of four exten-
sions of context-free grammars. Mathematical Systems Theory, 27(6):
511–546, 1994.



an introduction to multiple context free grammars for linguists 25

Ryo Yoshinaka. Polynomial-time identification of multiple context-
free languages from positive data and membership queries. In
Proceedings of the International Colloquium on Grammatical Inference,
pages 230–244, 2010.

Ryo Yoshinaka. Efficient learning of multiple context-free languages
with multidimensional substitutability from positive data. Theoreti-
cal Computer Science, 412(19):1821 – 1831, 2011.


	Introduction
	Context free grammars
	Multiple Context Free Grammars
	Relative clauses
	Discussion
	Acknowledgments

