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The Strong Probabilistic Learning Problem

Horning [1969]

> We have a sequence of strings drawn i.i.d. from a distribution
defined by a probabilistic grammar/automaton

> PDFA [Clark and Thollard, 2004]

» HMM |[Stratos et al., 2016]

» PCFG [Clark and Fijalkow, 2020]

» Probabilistic Multiple Context-Free Grammars (this paper)

> We want to learn the grammar and the parameters to
arbitrary accuracy.
» Input: only the sample of strings
» Output: converges to a grammar isomorphic to the original
grammar, and with same parameters



Why?

Motivation
First language acquisition:
Key question:
» Do the surface strings contain enough information to infer
syntactic structure?

» Or must the learner rely on other sources of information
(semantic, prosodic, innate ...)?



Why?

Motivation
First language acquisition:
Key question:
» Do the surface strings contain enough information to infer
syntactic structure?

» Or must the learner rely on other sources of information
(semantic, prosodic, innate ...)?

Caveat
Some tension in this paper between validity of modeling
assumptions and the desire for mathematical cleanliness.



Mildly context-sensitive languages

Grammar class
Well-nested MCFGs [Seki et al., 1991] of dimension 2

» TAG, LIG, HG, CCG (depending on the version)[Joshi et al.,
1990]

» Assume standard restrictions on the rule format: non-deleting,
non-permuting, epsilon-free,. ..

Smallest class which is not definitely descriptively inadequate for
natural language syntax.
> Weakly and strongly more powerful than CFGs.

» Only a few cases where the additional power is definitely
necessary weakly [Shieber, 1985] ...

» but lots of cases where we need the additional structural
power.



Contributions of this paper

It's about understanding the problems of moving strong learning
from CFGs to MCFGs:

Negative There is a serious technical problem about identifying
discontinuous constituents.

Positive We can overcome this quite naturally under some
unreasonably strong restrictions on the class of
grammars. This gives a strong learning algorithm for
a small class of probabilistic MCFGs.

Simplest and most direct way of solving this problem



Context Free Grammars

CFG in Chomsky Normal Form:

Set of productions P of the form A— BC or A — a
S only occurs on the left hand side of productions.
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AN AN
A D A D b
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Trec Context Yield
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Context Free Grammars

» Write productions in Horn clause notation

» Label derivation tree with productions

S(xy) < A(x), D(y)

/\
A(a)  D(xy) + B(x),C(y)
N



Context Free Grammars

» Write productions in Horn clause notation

» Label derivation tree with productions
S(xy) < A(x),D(y) © B(b)

/\

A(a)  D(xy) + B(x), Cly)

DB C(C)



Multiple Context Free Grammars, dimension 2

» Have some nonterminals that generate pairs of strings, rather

than strings:
A generates the set of pairs {(a"”,b") | n > 0}

» This grammar generates {a"b" | n > 0}, tree has yield aabb.

5(X1X2) — A(Xl, XQ)

A(xiy1, yax2) « A(x1, x2), A(y1, y2)

RN

A(a,b) A(a,b)



Multiple Context Free Grammars, dimension 2

Nonterminal of dimension 2:
» Context is a string with two gaps [abl[]
» Yield is a pair of strings (a, b)
» Combine (with &) to get the string aabb.

5(X1X2) “— A(Xl,Xg) ) A(a, b)

A(xiy1, yax2) < A(x1, x2), A(y1, y2)

N

DA A(a, b)



Distributional learning

CFG
Look at distribution of a string:

» The words "that cat" and "the kitten" occur in similar
contexts:

» [ is so cutel!



Distributional learning

CFG
Look at distribution of a string:

» The words "that cat" and "the kitten" occur in similar
contexts:

» [ is so cutel!

MCFG [Yoshinaka, 2009]
Look at distribution of pairs of string:

» The tuples "which book, read" and "which cake, eat" occur in
similar contexts:

» [ did you [J yesterday?



Notation

For a nonterminal A,

Contexts

=(A) is a set of contexts with
one (4, and S at the root.
=(A, IOr) subset with yield /Cr

Yields

Q(A) is a set of trees with A at
the root.

Q(A, w) subset with yield w

ma Ua

™ 7B



Weighted Context Free Grammars
Smith and Johnson [2007]

Weighted (M)CFG

Parameter 6 for each production in RT, defines the weight of a
tree as

w(r) = [ 6(x)"=")

For each nonterminal A define:

I(A) = w(Q2(A)) (sum over yields)



Probabilistic Context Free Grammars

Stipulate that /(A) =1, and so O(A) = E(A). Each nonterminal
defines a probability distribution over its yields.
Parameters are in [0, 1] and satisfy:

f(A + BC) = W
a@) = )

Parameters have interpretation as conditional probabilities in a top
down generative process starting with S.



Bottom up parameterization of Weighted CFGs

Stipulate that O(A) =1, and /(A) = E(A): each nonterminal
defines a probability distribution over its contexts.
Parameters are no longer in [0, 1] but satisfy:

E(A + BC)

E(B)E(C)

0(A(a)) = E(A(a))

(A<« BC) =



The major problem:
Non identifiability of PCFGs and CFGs from strings [Hsu et al., 2013]

Given distribution over strings

P(abc) =1
S S
N N
A D D C
VA NVANEN



The major problem:
Non identifiability of PCFGs and CFGs from strings [Hsu et al., 2013]

Given distribution over strings

P(abc) =1
S S 5(X1X2) — D(X]_,X2)
N N |
A D D C D(ay,x) <« A(x,x), B(y)
VAN AN N

B C A B A(a,c) B(b)
I .
b ¢ a b



Anchored Context Free Grammars
Stratos et al. [2016]

Assume that for every nonterminal A there is a terminal a which
occurs only in the production A(a).

Reasonable assumption if number of words is much greater than
number of nonterminals.

Example in English
» she (NP)
» the (Det)
> kitten (N)



Bottom up and anchored

Key property of anchoring
So for all contexts /Or

Q(S, lar) = Z(A, IOr) & A(a)



Bottom up and anchored

Key property of anchoring
So for all contexts /Or

Q(S, lar) = Z(A, IOr) & A(a)

w(Q(S, lar)) = w(Z(A, I0r))0(A(a))

So, sum over all contexts:

and




The strings
she and the kitten

The production
NP — Det N



The strings
she and the kitten

The production
NP — Det N
Two old ideas [Harris, 1955]:
1. There should be high M| between the and kitten

2. she and the kitten should occur in the same contexts

Distributional similarity

A string u defines a distribution over its contexts:

P(lur)
E(u)

I, r has probability



Divergence between context distributions

Rényi divergence, a = oo, between discrete distributions P and Q:

P(x)
Q(x)

R (P]|Q) = logsup

> Asymmetric
> Satisfies triangle inequality
> In [0, 0]

Define for strings u and v

P(lu
Reo = ZAr)/EAL)
(uflv) = log *F P(lvr) /E(v)



Binary rule

Given nonterminals A, B, C anchored by a, b, ¢ resp.:

log (A « BC)
[ —

bottom-up parameter



Binary rule

Given nonterminals A, B, C anchored by a, b, ¢ resp.:

E(bc)
logf(A < BC) =log ————
LefA = BO) =108 (e
bottom-up parameter —

PMI of rhs



Binary rule

Given nonterminals A, B, C anchored by a, b, ¢ resp.:

E(bc)
log(A <+ BC) =log ———=— — R b
og ( — ) og E(b)E(C) oo(aH C)
bottom-up parameter divergence of |hs from rhs
PMI of rhs

Right hand side depends only on the distribution over strings.



Lexical rule

Given nonterminal A anchored by a, and a terminal d:

og0(A(d)) = logE(d) —  Re(ald)
—— ———
bottom-up parameter lexical frequency  divergence of lhs from rhs



Further conditions

Local Unambiguity

A weak condition limiting how ambiguous the grammar is:
For every production A — «, there is a string which always uses
that production "in the same place".

For every production m =A<+ B, C
there is a string w = luvr such that

Q(G,w) = Z(A, I0r) ® n((B, u), 2(C, v))



Completeness

All productions of rank at most k, that don't overgenerate are
either

» in the grammar

» Or can be derived in the grammar.

For example: for CFG productions A < BC and C < DE, we
can derive A« BDE.



Proof for lexical production
A(a) is an anchor, A(d) some other production.
Q(S, Idr) D =(A,I0r) & A(d)
w((S, Idr)) > w(Z(A, I0r))w(A(d))



Proof for lexical production
A(a) is an anchor, A(d) some other production.

Q(S,Idr) 2 =(A, 10r) & A(d)
w(Q(S, Idr)) > w(=(A, IOr))w(A(d))

Rearranging



Proof for lexical production
A(a) is an anchor, A(d) some other production.

Q(S,Idr) 2 =(A, 10r) & A(d)
w(Q(S, Idr)) > w(=(A, IOr))w(A(d))

oA <~
Minimizing over the contexts
P(ldr)E(a)




|dentifying terminals as anchors

Context distributions of all terminals will lie in the convex hull of

the anchors:
c

Roo (allb) = Roo (b|a) = o0



Result of Clark and Fijalkow [2020], Clark [2021]

There is computationally efficient consistent estimator from
strings, for all PCFGs whose underlying CFG is

1. Anchored
2. Locally Unambiguous
3. Complete

Using naive plug-in estimators that are slow to converge.



Extending to MCFGs

Straightforward

» Completeness

» Local unambiguity

Anchoring for MCFGs

For every nonterminal A of dimension 2, there are distinct
terminals a and b such that

A(a, b)

is the only production in the grammar using a or b.



Key property is in general false!
(Not true that) For all contexts /[Omr

Q(S, lambr) = =(A, IOmOr) & A(a, b)

AN



Running Example

Because we might have more than one occurrence of A(a, b) and
we don't know which ones match up.

Q(G, aabb) = Z(A,0ab0d) ® Q(A, (a, b))



Running Example

Because we might have more than one occurrence of A(a, b) and
we don't know which ones match up.

Q(G, aabb) = Z(A,0ab0d) ® Q(A, (a, b))
But
Q(G, aabb) # =(A, a0b0) &Q(A, (a, b))
—_————
empty

There are 4 contexts that combine with (a, b) to give aabb but
only 2 of them correspond to contexts of A.



Pattern |

s

T

s TX

NN

A(a, b) X

N

m  A(a,b)

AN

Ignoring all other terminals, this can only be abab or aabb.



Pattern I

s

/\
SN N

Ignoring all other terminals, this can only be
ababab, aabbab, abaabb or aaabbb.



Dyck language

There is a pattern, and it's the Dyck language, the language of
matching brackets: where a is open bracket and b is close bracket.

Well-nested
If the grammar is well-nested then occurrences of a, b generated by
same anchoring production will match as brackets.

fw=...a...a...b...b...,
then

QG,w)==(A,...0...a...b...0...) 2 A(a, b)

and



Well-nestedness

Well-nested:

A(x1y1, yaxo) < A(x1, x2), A(y1, y2)

Non well-nested:

A(x1y1, x2y2) < A(x1, x2), A(y1, y2)



Using this Dyck idea

Identifying nonterminals of dimension 2
Find pairs of distinct terminals which only occur in these Dyck
patterns: (Dyck pairs)
» Handle ambiguity in the same way that it is handled with
anchors for dimension 1 nonterminals.

» A(c,d) and B(c,d)

|dentifying parameters
Restrict contexts to those that are compatible with the Dyck
bracketing.

Similar decomposition for a production (careful with defn.):

T = A(x1y1, y2x2) < B(x1,x2), C(y1,y2)

E(bc, c'b’)

log(6(7)) = log E(b, B)E(c,c) Roo ((2,d)|(bc, ¢'b'))



Result

Grammar class
Well-nested MCFGs of dimension 2 in a restricted normal form up
to rank k.

» Doubly anchored:
Nonterminal of dimension 2 anchor is A(a, a’)
Nonterminal of dimension 1 two anchors A(a) and A(a)
» Technical conditions:

Locally unambiguous
Complete All possible productions that don't overgenerate
can be derived.

Theorem
A consistent learning algorithm for all probabilistic grammars
where the grammar is in this class.



Example generating a non-context-free language

Cross-serial dependencies

Ts
|
s = S(xixe) <~ A(xi,x) e
wce = Alxwy, xz) <+ A(xi,x), C(y), E(z) MC\E
moF = A(x1y, xez) <+ A(x1,x2),D(y), F(z) TDF (c) (e)
/R
A(a, b),C(c), D(d), A(a,b) D(d) F(f)

E(e).F(f),C(c'), D(d'), E(e),F(F)

Yield is adcbfe



Discussion

Solution is not as interesting as the problem:

» Key technical obstacle is identifying the discontinuous
constituents: same problem as for CFGs with anchors of
length greater than 1.

» Dimension 2 nonterminals will be used extensively even for the
CFG modelable components of the language.

» It seems like some additional information would be helpful to
help identify discontinuous constituents. But probably not
necessary.

» Anchoring assumption is unreasonable, at least if the terminal
symbols are words.

» Well-nestedness [Kanazawa et al., 2011] seems important
(again).



Conclusion

> A first algorithm for strong probabilistic learning of a standard
mildly context-sensitive formalism from strings.

Take-home point

It is in principle possible to efficiently learn derivation trees of
mildly context-sensitive grammars just from strings.

Open questions

» Can the anchoring assumption be weakened?
(Yes)

» Can we do this with Minimalist grammars or CCG?
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