Computational Learning of Syntax
Authors Clark, Alexander
Year 2017
Abstract Learnability has traditionally been considered to be a crucial constraint on theoretical syntax; however, the issues involved have been poorly understood, partly as a result of the lack of simple learning algorithms for various types of formal grammars. Here I discuss the computational issues involved in learning hierarchically structured grammars from strings of symbols alone. The methods involved are based on an abstract notion of the derivational context of a syntactic category, which in the most elementary case of context-free grammars leads to learning algorithms based on a form of traditional distributional analysis.
[Read More]